CuticleTrace:捕捉叶片角质层细胞轮廓的工具包,对古生态学和古气候学具有重要意义

IF 2.7 3区 生物学 Q2 PLANT SCIENCES Applications in Plant Sciences Pub Date : 2024-02-02 DOI:10.1002/aps3.11566
Benjamin A. Lloyd, Richard S. Barclay, Regan E. Dunn, Ellen D. Currano, Ayuni I. Mohamaad, Kymbre Skersies, Surangi W. Punyasena
{"title":"CuticleTrace:捕捉叶片角质层细胞轮廓的工具包,对古生态学和古气候学具有重要意义","authors":"Benjamin A. Lloyd,&nbsp;Richard S. Barclay,&nbsp;Regan E. Dunn,&nbsp;Ellen D. Currano,&nbsp;Ayuni I. Mohamaad,&nbsp;Kymbre Skersies,&nbsp;Surangi W. Punyasena","doi":"10.1002/aps3.11566","DOIUrl":null,"url":null,"abstract":"<div>\n \n \n <section>\n \n <h3> Premise</h3>\n \n <p>Leaf epidermal cell morphology is closely tied to the evolutionary history of plants and their growth environments and is therefore of interest to many plant biologists. However, cell measurement can be time consuming and restrictive with current methods. CuticleTrace is a suite of Fiji and R-based functions that streamlines and automates the segmentation and measurement of epidermal pavement cells across a wide range of cell morphologies and image qualities.</p>\n </section>\n \n <section>\n \n <h3> Methods and Results</h3>\n \n <p>We evaluated CuticleTrace-generated measurements against those from alternate automated methods and expert and undergraduate hand tracings across a taxonomically diverse 50-image data set of variable image qualities. We observed ~93% statistical agreement between CuticleTrace and expert hand-traced measurements, outperforming alternate methods.</p>\n </section>\n \n <section>\n \n <h3> Conclusions</h3>\n \n <p>CuticleTrace is a broadly applicable, modular, and customizable tool that integrates data visualization and cell shape measurement with image segmentation, lowering the barrier to high-throughput studies of epidermal morphology by vastly decreasing the labor investment required to generate high-quality cell shape data sets.</p>\n </section>\n </div>","PeriodicalId":8022,"journal":{"name":"Applications in Plant Sciences","volume":null,"pages":null},"PeriodicalIF":2.7000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11566","citationCount":"0","resultStr":"{\"title\":\"CuticleTrace: A toolkit for capturing cell outlines from leaf cuticle with implications for paleoecology and paleoclimatology\",\"authors\":\"Benjamin A. Lloyd,&nbsp;Richard S. Barclay,&nbsp;Regan E. Dunn,&nbsp;Ellen D. Currano,&nbsp;Ayuni I. Mohamaad,&nbsp;Kymbre Skersies,&nbsp;Surangi W. Punyasena\",\"doi\":\"10.1002/aps3.11566\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div>\\n \\n \\n <section>\\n \\n <h3> Premise</h3>\\n \\n <p>Leaf epidermal cell morphology is closely tied to the evolutionary history of plants and their growth environments and is therefore of interest to many plant biologists. However, cell measurement can be time consuming and restrictive with current methods. CuticleTrace is a suite of Fiji and R-based functions that streamlines and automates the segmentation and measurement of epidermal pavement cells across a wide range of cell morphologies and image qualities.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Methods and Results</h3>\\n \\n <p>We evaluated CuticleTrace-generated measurements against those from alternate automated methods and expert and undergraduate hand tracings across a taxonomically diverse 50-image data set of variable image qualities. We observed ~93% statistical agreement between CuticleTrace and expert hand-traced measurements, outperforming alternate methods.</p>\\n </section>\\n \\n <section>\\n \\n <h3> Conclusions</h3>\\n \\n <p>CuticleTrace is a broadly applicable, modular, and customizable tool that integrates data visualization and cell shape measurement with image segmentation, lowering the barrier to high-throughput studies of epidermal morphology by vastly decreasing the labor investment required to generate high-quality cell shape data sets.</p>\\n </section>\\n </div>\",\"PeriodicalId\":8022,\"journal\":{\"name\":\"Applications in Plant Sciences\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/aps3.11566\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Applications in Plant Sciences\",\"FirstCategoryId\":\"99\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11566\",\"RegionNum\":3,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PLANT SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Applications in Plant Sciences","FirstCategoryId":"99","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/aps3.11566","RegionNum":3,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PLANT SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

前言 叶表皮细胞形态与植物的进化史及其生长环境密切相关,因此受到许多植物生物学家的关注。然而,目前的细胞测量方法既耗时又有局限性。CuticleTrace 是一套基于 Fiji 和 R 的函数,可简化和自动化表皮铺层细胞的分割和测量,适用于多种细胞形态和图像质量。 方法与结果 我们评估了 CuticleTrace 生成的测量结果与其他自动方法以及专家和本科生手工描记的测量结果之间的差异。我们观察到,CuticleTrace 和专家手描测量结果的统计一致性高达约 93%,优于其他方法。 结论 CuticleTrace 是一种广泛适用、模块化和可定制的工具,它将数据可视化和细胞形状测量与图像分割整合在一起,通过大大减少生成高质量细胞形状数据集所需的人力投入,降低了表皮形态学高通量研究的门槛。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
CuticleTrace: A toolkit for capturing cell outlines from leaf cuticle with implications for paleoecology and paleoclimatology

Premise

Leaf epidermal cell morphology is closely tied to the evolutionary history of plants and their growth environments and is therefore of interest to many plant biologists. However, cell measurement can be time consuming and restrictive with current methods. CuticleTrace is a suite of Fiji and R-based functions that streamlines and automates the segmentation and measurement of epidermal pavement cells across a wide range of cell morphologies and image qualities.

Methods and Results

We evaluated CuticleTrace-generated measurements against those from alternate automated methods and expert and undergraduate hand tracings across a taxonomically diverse 50-image data set of variable image qualities. We observed ~93% statistical agreement between CuticleTrace and expert hand-traced measurements, outperforming alternate methods.

Conclusions

CuticleTrace is a broadly applicable, modular, and customizable tool that integrates data visualization and cell shape measurement with image segmentation, lowering the barrier to high-throughput studies of epidermal morphology by vastly decreasing the labor investment required to generate high-quality cell shape data sets.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
7.30
自引率
0.00%
发文量
50
审稿时长
12 weeks
期刊介绍: Applications in Plant Sciences (APPS) is a monthly, peer-reviewed, open access journal promoting the rapid dissemination of newly developed, innovative tools and protocols in all areas of the plant sciences, including genetics, structure, function, development, evolution, systematics, and ecology. Given the rapid progress today in technology and its application in the plant sciences, the goal of APPS is to foster communication within the plant science community to advance scientific research. APPS is a publication of the Botanical Society of America, originating in 2009 as the American Journal of Botany''s online-only section, AJB Primer Notes & Protocols in the Plant Sciences. APPS publishes the following types of articles: (1) Protocol Notes describe new methods and technological advancements; (2) Genomic Resources Articles characterize the development and demonstrate the usefulness of newly developed genomic resources, including transcriptomes; (3) Software Notes detail new software applications; (4) Application Articles illustrate the application of a new protocol, method, or software application within the context of a larger study; (5) Review Articles evaluate available techniques, methods, or protocols; (6) Primer Notes report novel genetic markers with evidence of wide applicability.
期刊最新文献
Issue Information An efficient and effective RNA extraction protocol for ferns florabr: An R package to explore and spatialize species distribution using Flora e Funga do Brasil Issue Information A unified framework to investigate and interpret hybrid and allopolyploid biodiversity across biological scales
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1