Arpad Gellert, Lorena-Maria Olaru, Adrian Florea, Ileana-Ioana Cofaru, Ugo Fiore, Francesco Palmieri
{"title":"通过先进的机器学习方法估算城市一级的用电量","authors":"Arpad Gellert, Lorena-Maria Olaru, Adrian Florea, Ileana-Ioana Cofaru, Ugo Fiore, Francesco Palmieri","doi":"10.1080/09540091.2024.2313852","DOIUrl":null,"url":null,"abstract":"An effective energy management system relies on the accurate prediction of electricity consumption, facilitating energy suppliers to optimise energy distribution, reduce energy waste, and avoid ove...","PeriodicalId":50629,"journal":{"name":"Connection Science","volume":null,"pages":null},"PeriodicalIF":3.2000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Estimating electricity consumption at city-level through advanced machine learning methods\",\"authors\":\"Arpad Gellert, Lorena-Maria Olaru, Adrian Florea, Ileana-Ioana Cofaru, Ugo Fiore, Francesco Palmieri\",\"doi\":\"10.1080/09540091.2024.2313852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"An effective energy management system relies on the accurate prediction of electricity consumption, facilitating energy suppliers to optimise energy distribution, reduce energy waste, and avoid ove...\",\"PeriodicalId\":50629,\"journal\":{\"name\":\"Connection Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Connection Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1080/09540091.2024.2313852\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Connection Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1080/09540091.2024.2313852","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
Estimating electricity consumption at city-level through advanced machine learning methods
An effective energy management system relies on the accurate prediction of electricity consumption, facilitating energy suppliers to optimise energy distribution, reduce energy waste, and avoid ove...
期刊介绍:
Connection Science is an interdisciplinary journal dedicated to exploring the convergence of the analytic and synthetic sciences, including neuroscience, computational modelling, artificial intelligence, machine learning, deep learning, Database, Big Data, quantum computing, Blockchain, Zero-Knowledge, Internet of Things, Cybersecurity, and parallel and distributed computing.
A strong focus is on the articles arising from connectionist, probabilistic, dynamical, or evolutionary approaches in aspects of Computer Science, applied applications, and systems-level computational subjects that seek to understand models in science and engineering.