{"title":"描述高能 pp 对撞中通过电荷交换相互作用产生反中子的可行性研究","authors":"F Lugo-Porras, D M Gomez-Coral, A Menchaca-Rocha","doi":"10.1088/1361-6471/ad1dc1","DOIUrl":null,"url":null,"abstract":"Simulations to evaluate the feasibility of antineutron identification and kinematic characterization via the hadronic charge exchange (CEX) interaction <inline-formula>\n<tex-math>\n<?CDATA $n\\,+\\,\\bar{n}\\,\\to \\,p\\,+\\,\\bar{p}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mi>n</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mo>+</mml:mo><mml:mspace width=\"0.25em\"></mml:mspace><mml:mover accent=\"true\"><mml:mi>n</mml:mi><mml:mo>¯</mml:mo></mml:mover><mml:mspace width=\"0.25em\"></mml:mspace><mml:mo>→</mml:mo><mml:mspace width=\"0.25em\"></mml:mspace><mml:mi>p</mml:mi><mml:mspace width=\"0.25em\"></mml:mspace><mml:mo>+</mml:mo><mml:mspace width=\"0.25em\"></mml:mspace><mml:mover accent=\"true\"><mml:mi>p</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn1.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> are reported. The target neutrons are those composing the silicon nuclei of which inner tracking devices present in the Large Hadron Collider experiments ALICE, ATLAS, and CMS. Simulations of <italic toggle=\"yes\">pp</italic> collisions in PYTHIA were carried out at different energies to investigate <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn2.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> production and energy spectra. These simulations produced a decreasing power-law <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn3.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> energy spectra. Then, two types of GEANT4 simulations were performed, placing an <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn4.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> point source at the ALICE primary vertex, as a working example. In the first simulation, the kinetic energy <italic toggle=\"yes\">E</italic>\n<sub>\n<italic toggle=\"yes\">k</italic>\n</sub> was kept at an arbitrary (1 GeV) fix value to develop an <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn5.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> identification and kinematics reconstruction protocol. The second GEANT4 simulation used the resulting PYTHIA at <inline-formula>\n<tex-math>\n<?CDATA $\\sqrt{{s}_{{pp}}}\\,=\\,13$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"italic\">pp</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mspace width=\"0.25em\"></mml:mspace><mml:mo>=</mml:mo><mml:mspace width=\"0.25em\"></mml:mspace><mml:mn>13</mml:mn></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn6.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> TeV <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn7.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> energy spectra. In both GEANT4 simulations, the occurrence of CEX interactions was identified by the unique outgoing <inline-formula>\n<tex-math>\n<?CDATA $\\bar{p}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn8.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>. The simplified simulation allowed to estimate a 0.11% CEX-interaction identification efficiency at <italic toggle=\"yes\">E</italic>\n<sub>\n<italic toggle=\"yes\">k</italic>\n</sub> = 1 GeV. The <italic toggle=\"yes\">p</italic> CEX-partner identification is challenging because of the presence of silicon nucleus-fragmentation protons. Momentum correlations between the <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn9.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> and all possible <inline-formula>\n<tex-math>\n<?CDATA $\\bar{p}p$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mi>p</mml:mi></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn10.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> pairs showed that <italic toggle=\"yes\">p</italic> CEX-partner identification and <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn11.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> kinematics reconstruction corresponds to minimal momentum-loss events. The use of inner tracking system d<italic toggle=\"yes\">E</italic>/d<italic toggle=\"yes\">x</italic> information is found to improve <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn12.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> identification and kinematic characterization in both GEANT4 simulations. The final protocol applied to the realistic GEANT4 simulation resulted in a <inline-formula>\n<tex-math>\n<?CDATA $\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn13.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> identification and kinematic reconstruction efficiency of 0.006%, based solely on <inline-formula>\n<tex-math>\n<?CDATA $\\bar{p}p$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mover accent=\"true\"><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mi>p</mml:mi></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn14.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> pair observable. If applied to the ALICE minimum-bias RUN2 <italic toggle=\"yes\">pp</italic> at <inline-formula>\n<tex-math>\n<?CDATA $\\sqrt{{s}_{{pp}}}=13$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\"italic\">pp</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn15.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula> TeV data sample, this technique is found to have the potential to identify and reconstruct the kinematics of <inline-formula>\n<tex-math>\n<?CDATA $4.3\\times {10}^{8}\\bar{n}$?>\n</tex-math>\n<mml:math overflow=\"scroll\"><mml:mn>4.3</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mn>8</mml:mn></mml:mrow></mml:msup><mml:mover accent=\"true\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\n<inline-graphic xlink:href=\"jpgad1dc1ieqn16.gif\" xlink:type=\"simple\"></inline-graphic>\n</inline-formula>'s, illustrating the feasibility of the method.","PeriodicalId":16766,"journal":{"name":"Journal of Physics G: Nuclear and Particle Physics","volume":"153 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Feasibility study to characterize the production of antineutrons in high energy pp collisions through charge exchange interactions\",\"authors\":\"F Lugo-Porras, D M Gomez-Coral, A Menchaca-Rocha\",\"doi\":\"10.1088/1361-6471/ad1dc1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Simulations to evaluate the feasibility of antineutron identification and kinematic characterization via the hadronic charge exchange (CEX) interaction <inline-formula>\\n<tex-math>\\n<?CDATA $n\\\\,+\\\\,\\\\bar{n}\\\\,\\\\to \\\\,p\\\\,+\\\\,\\\\bar{p}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mi>n</mml:mi><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mo>+</mml:mo><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mover accent=\\\"true\\\"><mml:mi>n</mml:mi><mml:mo>¯</mml:mo></mml:mover><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mo>→</mml:mo><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mi>p</mml:mi><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mo>+</mml:mo><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mover accent=\\\"true\\\"><mml:mi>p</mml:mi><mml:mo>¯</mml:mo></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn1.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> are reported. The target neutrons are those composing the silicon nuclei of which inner tracking devices present in the Large Hadron Collider experiments ALICE, ATLAS, and CMS. Simulations of <italic toggle=\\\"yes\\\">pp</italic> collisions in PYTHIA were carried out at different energies to investigate <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn2.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> production and energy spectra. These simulations produced a decreasing power-law <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn3.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> energy spectra. Then, two types of GEANT4 simulations were performed, placing an <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn4.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> point source at the ALICE primary vertex, as a working example. In the first simulation, the kinetic energy <italic toggle=\\\"yes\\\">E</italic>\\n<sub>\\n<italic toggle=\\\"yes\\\">k</italic>\\n</sub> was kept at an arbitrary (1 GeV) fix value to develop an <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn5.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> identification and kinematics reconstruction protocol. The second GEANT4 simulation used the resulting PYTHIA at <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\sqrt{{s}_{{pp}}}\\\\,=\\\\,13$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"italic\\\">pp</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mo>=</mml:mo><mml:mspace width=\\\"0.25em\\\"></mml:mspace><mml:mn>13</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn6.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> TeV <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn7.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> energy spectra. In both GEANT4 simulations, the occurrence of CEX interactions was identified by the unique outgoing <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{p}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn8.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>. The simplified simulation allowed to estimate a 0.11% CEX-interaction identification efficiency at <italic toggle=\\\"yes\\\">E</italic>\\n<sub>\\n<italic toggle=\\\"yes\\\">k</italic>\\n</sub> = 1 GeV. The <italic toggle=\\\"yes\\\">p</italic> CEX-partner identification is challenging because of the presence of silicon nucleus-fragmentation protons. Momentum correlations between the <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn9.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> and all possible <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{p}p$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mi>p</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn10.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> pairs showed that <italic toggle=\\\"yes\\\">p</italic> CEX-partner identification and <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn11.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> kinematics reconstruction corresponds to minimal momentum-loss events. The use of inner tracking system d<italic toggle=\\\"yes\\\">E</italic>/d<italic toggle=\\\"yes\\\">x</italic> information is found to improve <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn12.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> identification and kinematic characterization in both GEANT4 simulations. The final protocol applied to the realistic GEANT4 simulation resulted in a <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn13.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> identification and kinematic reconstruction efficiency of 0.006%, based solely on <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\bar{p}p$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>p</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover><mml:mi>p</mml:mi></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn14.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> pair observable. If applied to the ALICE minimum-bias RUN2 <italic toggle=\\\"yes\\\">pp</italic> at <inline-formula>\\n<tex-math>\\n<?CDATA $\\\\sqrt{{s}_{{pp}}}=13$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:msqrt><mml:mrow><mml:msub><mml:mrow><mml:mi>s</mml:mi></mml:mrow><mml:mrow><mml:mi mathvariant=\\\"italic\\\">pp</mml:mi></mml:mrow></mml:msub></mml:mrow></mml:msqrt><mml:mo>=</mml:mo><mml:mn>13</mml:mn></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn15.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula> TeV data sample, this technique is found to have the potential to identify and reconstruct the kinematics of <inline-formula>\\n<tex-math>\\n<?CDATA $4.3\\\\times {10}^{8}\\\\bar{n}$?>\\n</tex-math>\\n<mml:math overflow=\\\"scroll\\\"><mml:mn>4.3</mml:mn><mml:mo>×</mml:mo><mml:msup><mml:mrow><mml:mn>10</mml:mn></mml:mrow><mml:mrow><mml:mn>8</mml:mn></mml:mrow></mml:msup><mml:mover accent=\\\"true\\\"><mml:mrow><mml:mi>n</mml:mi></mml:mrow><mml:mrow><mml:mo>¯</mml:mo></mml:mrow></mml:mover></mml:math>\\n<inline-graphic xlink:href=\\\"jpgad1dc1ieqn16.gif\\\" xlink:type=\\\"simple\\\"></inline-graphic>\\n</inline-formula>'s, illustrating the feasibility of the method.\",\"PeriodicalId\":16766,\"journal\":{\"name\":\"Journal of Physics G: Nuclear and Particle Physics\",\"volume\":\"153 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics G: Nuclear and Particle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6471/ad1dc1\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G: Nuclear and Particle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6471/ad1dc1","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
引用次数: 0
摘要
报告了评估通过强子电荷交换(CEX)相互作用 n+n¯→p+p¯ 进行反中子识别和运动学表征的可行性的模拟。目标中子是构成硅核的那些中子,大型强子对撞机实验ALICE、ATLAS和CMS中都有内部跟踪装置。在PYTHIA中对不同能量下的pp对撞进行了模拟,以研究n'的产生和能谱。这些模拟产生了幂律递减的 n¯ 能量谱。然后,以在ALICE主顶点放置一个n¯点源为例,进行了两种类型的GEANT4模拟。在第一次模拟中,动能 Ek 保持在一个任意(1 GeV)的固定值,以开发 n¯ 识别和运动学重建协议。第二次 GEANT4 模拟使用的是PYTHIA 在 spp=13 TeV n¯能谱的结果。在这两次GEANT4模拟中,CEX相互作用的发生都是通过唯一的出射p¯来识别的。简化模拟可以估算出在 Ek = 1 GeV 时的 CEX-相互作用识别效率为 0.11%。由于硅核碎片质子的存在,p CEX伙伴的识别具有挑战性。n¯和所有可能的p¯p对之间的动量相关性表明,p CEX-伴侣识别和n¯运动学重建对应于最小的动量损失事件。在两次 GEANT4 模拟中,发现使用内部跟踪系统 dE/dx 信息可以改进 n¯ 的识别和运动学特征描述。应用于现实的GEANT4模拟的最终协议,仅基于p¯p对可观测性,n¯识别和运动学重建效率为0.006%。如果将这一技术应用于ALICE最小偏置RUN2 pp at spp=13 TeV数据样本,则有可能识别和重建4.3×108个n'的运动学,这说明了该方法的可行性。
Feasibility study to characterize the production of antineutrons in high energy pp collisions through charge exchange interactions
Simulations to evaluate the feasibility of antineutron identification and kinematic characterization via the hadronic charge exchange (CEX) interaction n+n¯→p+p¯ are reported. The target neutrons are those composing the silicon nuclei of which inner tracking devices present in the Large Hadron Collider experiments ALICE, ATLAS, and CMS. Simulations of pp collisions in PYTHIA were carried out at different energies to investigate n¯ production and energy spectra. These simulations produced a decreasing power-law n¯ energy spectra. Then, two types of GEANT4 simulations were performed, placing an n¯ point source at the ALICE primary vertex, as a working example. In the first simulation, the kinetic energy Ek was kept at an arbitrary (1 GeV) fix value to develop an n¯ identification and kinematics reconstruction protocol. The second GEANT4 simulation used the resulting PYTHIA at spp=13 TeV n¯ energy spectra. In both GEANT4 simulations, the occurrence of CEX interactions was identified by the unique outgoing p¯. The simplified simulation allowed to estimate a 0.11% CEX-interaction identification efficiency at Ek = 1 GeV. The p CEX-partner identification is challenging because of the presence of silicon nucleus-fragmentation protons. Momentum correlations between the n¯ and all possible p¯p pairs showed that p CEX-partner identification and n¯ kinematics reconstruction corresponds to minimal momentum-loss events. The use of inner tracking system dE/dx information is found to improve n¯ identification and kinematic characterization in both GEANT4 simulations. The final protocol applied to the realistic GEANT4 simulation resulted in a n¯ identification and kinematic reconstruction efficiency of 0.006%, based solely on p¯p pair observable. If applied to the ALICE minimum-bias RUN2 pp at spp=13 TeV data sample, this technique is found to have the potential to identify and reconstruct the kinematics of 4.3×108n¯'s, illustrating the feasibility of the method.
期刊介绍:
Journal of Physics G: Nuclear and Particle Physics (JPhysG) publishes articles on theoretical and experimental topics in all areas of nuclear and particle physics, including nuclear and particle astrophysics. The journal welcomes submissions from any interface area between these fields.
All aspects of fundamental nuclear physics research, including:
nuclear forces and few-body systems;
nuclear structure and nuclear reactions;
rare decays and fundamental symmetries;
hadronic physics, lattice QCD;
heavy-ion physics;
hot and dense matter, QCD phase diagram.
All aspects of elementary particle physics research, including:
high-energy particle physics;
neutrino physics;
phenomenology and theory;
beyond standard model physics;
electroweak interactions;
fundamental symmetries.
All aspects of nuclear and particle astrophysics including:
nuclear physics of stars and stellar explosions;
nucleosynthesis;
nuclear equation of state;
astrophysical neutrino physics;
cosmic rays;
dark matter.
JPhysG publishes a variety of article types for the community. As well as high-quality research papers, this includes our prestigious topical review series, focus issues, and the rapid publication of letters.