{"title":"原子核纯旋转能的配对效应","authors":"K Abe, H Nakada","doi":"10.1088/1361-6471/ad1a77","DOIUrl":null,"url":null,"abstract":"By applying the angular-momentum projection to the self-consistent axial mean-field solutions with the semi-realistic effective Hamiltonian M3Y-P6, the pairing effects on the pure rotational energy of nuclei, i.e. the rotational energy at a fixed intrinsic state, have been investigated. While it was shown at the Hartree–Fock (HF) level that the individual terms of the Hamiltonian contribute to the rotational energy with ratios insensitive to nuclides except for light or weakly-deformed nuclei, the pair correlations significantly change the contributions, even for the well-deformed heavy nuclei. The contribution of the interaction to the rotational energy is found to correlate well with the degree of proximity between nucleons, which is measured via the expectation value that two nucleons exist at the same position. While the nucleons slightly spread as the angular momentum increases at the HF level, accounting for the positive (negative) contribution of the attractive (repulsive) components of the interaction, the pair correlations reduce or invert the effect.","PeriodicalId":16766,"journal":{"name":"Journal of Physics G: Nuclear and Particle Physics","volume":"256 1","pages":""},"PeriodicalIF":3.4000,"publicationDate":"2024-01-25","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pairing effects on pure rotational energy of nuclei\",\"authors\":\"K Abe, H Nakada\",\"doi\":\"10.1088/1361-6471/ad1a77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"By applying the angular-momentum projection to the self-consistent axial mean-field solutions with the semi-realistic effective Hamiltonian M3Y-P6, the pairing effects on the pure rotational energy of nuclei, i.e. the rotational energy at a fixed intrinsic state, have been investigated. While it was shown at the Hartree–Fock (HF) level that the individual terms of the Hamiltonian contribute to the rotational energy with ratios insensitive to nuclides except for light or weakly-deformed nuclei, the pair correlations significantly change the contributions, even for the well-deformed heavy nuclei. The contribution of the interaction to the rotational energy is found to correlate well with the degree of proximity between nucleons, which is measured via the expectation value that two nucleons exist at the same position. While the nucleons slightly spread as the angular momentum increases at the HF level, accounting for the positive (negative) contribution of the attractive (repulsive) components of the interaction, the pair correlations reduce or invert the effect.\",\"PeriodicalId\":16766,\"journal\":{\"name\":\"Journal of Physics G: Nuclear and Particle Physics\",\"volume\":\"256 1\",\"pages\":\"\"},\"PeriodicalIF\":3.4000,\"publicationDate\":\"2024-01-25\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Physics G: Nuclear and Particle Physics\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1088/1361-6471/ad1a77\",\"RegionNum\":3,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"PHYSICS, NUCLEAR\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Physics G: Nuclear and Particle Physics","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1088/1361-6471/ad1a77","RegionNum":3,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"PHYSICS, NUCLEAR","Score":null,"Total":0}
Pairing effects on pure rotational energy of nuclei
By applying the angular-momentum projection to the self-consistent axial mean-field solutions with the semi-realistic effective Hamiltonian M3Y-P6, the pairing effects on the pure rotational energy of nuclei, i.e. the rotational energy at a fixed intrinsic state, have been investigated. While it was shown at the Hartree–Fock (HF) level that the individual terms of the Hamiltonian contribute to the rotational energy with ratios insensitive to nuclides except for light or weakly-deformed nuclei, the pair correlations significantly change the contributions, even for the well-deformed heavy nuclei. The contribution of the interaction to the rotational energy is found to correlate well with the degree of proximity between nucleons, which is measured via the expectation value that two nucleons exist at the same position. While the nucleons slightly spread as the angular momentum increases at the HF level, accounting for the positive (negative) contribution of the attractive (repulsive) components of the interaction, the pair correlations reduce or invert the effect.
期刊介绍:
Journal of Physics G: Nuclear and Particle Physics (JPhysG) publishes articles on theoretical and experimental topics in all areas of nuclear and particle physics, including nuclear and particle astrophysics. The journal welcomes submissions from any interface area between these fields.
All aspects of fundamental nuclear physics research, including:
nuclear forces and few-body systems;
nuclear structure and nuclear reactions;
rare decays and fundamental symmetries;
hadronic physics, lattice QCD;
heavy-ion physics;
hot and dense matter, QCD phase diagram.
All aspects of elementary particle physics research, including:
high-energy particle physics;
neutrino physics;
phenomenology and theory;
beyond standard model physics;
electroweak interactions;
fundamental symmetries.
All aspects of nuclear and particle astrophysics including:
nuclear physics of stars and stellar explosions;
nucleosynthesis;
nuclear equation of state;
astrophysical neutrino physics;
cosmic rays;
dark matter.
JPhysG publishes a variety of article types for the community. As well as high-quality research papers, this includes our prestigious topical review series, focus issues, and the rapid publication of letters.