Bavithra Karunanidhi, Latha Ramasamy, Albert Alexander Stonier, Charles Raja Sathiasamuel
{"title":"为光伏系统开发数字孪生框架以解决部分遮阳问题","authors":"Bavithra Karunanidhi, Latha Ramasamy, Albert Alexander Stonier, Charles Raja Sathiasamuel","doi":"10.1155/2024/8374487","DOIUrl":null,"url":null,"abstract":"Digital twin (DT) is a prolific buzzword in this era, where digitization plays a significant role. The perception of solar energy harvesting has been gaining popularity with the advent of solar panels. Solar asset maintenance is a need of the hour for investors because of the smart city scheme and green building certificate evaluation for all industries, educational institutions, etc. Among the list of factors that reduce PV system efficiency, the issue of partial shading is a vital distress that must be resolved. This paper focuses on the development of a digital twin framework that is proactively driven by shading patterns and a proposed optimization-based reconfiguration embedded controller that electronically relocates the panel in the physical world. The real-time system has been created for a three-by-three series parallel panel arrangement. The proposed switching matrix controller achieves the maximum power, i.e., 40% of increased power output, row current difference is made almost zero from 3 to 4 A, and fill factor increases by 20% by reconfiguring the solar array. It is done based on a decision taken by a nature-inspired (equal irradiation distribution algorithm) or puzzle-based (skyscraper) optimization algorithm. Switching matrix controllers overcome the disadvantages of physical relocation. The users can query the digital twin build to know the historical performance and current operating conditions of the system. It can trigger alarms as early warnings and make predictions about possible system anomalies, if and when they occur using a digital twin.","PeriodicalId":18319,"journal":{"name":"Mathematical Problems in Engineering","volume":"9 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Development of a Digital Twin Framework for a PV System to Resolve Partial Shading\",\"authors\":\"Bavithra Karunanidhi, Latha Ramasamy, Albert Alexander Stonier, Charles Raja Sathiasamuel\",\"doi\":\"10.1155/2024/8374487\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Digital twin (DT) is a prolific buzzword in this era, where digitization plays a significant role. The perception of solar energy harvesting has been gaining popularity with the advent of solar panels. Solar asset maintenance is a need of the hour for investors because of the smart city scheme and green building certificate evaluation for all industries, educational institutions, etc. Among the list of factors that reduce PV system efficiency, the issue of partial shading is a vital distress that must be resolved. This paper focuses on the development of a digital twin framework that is proactively driven by shading patterns and a proposed optimization-based reconfiguration embedded controller that electronically relocates the panel in the physical world. The real-time system has been created for a three-by-three series parallel panel arrangement. The proposed switching matrix controller achieves the maximum power, i.e., 40% of increased power output, row current difference is made almost zero from 3 to 4 A, and fill factor increases by 20% by reconfiguring the solar array. It is done based on a decision taken by a nature-inspired (equal irradiation distribution algorithm) or puzzle-based (skyscraper) optimization algorithm. Switching matrix controllers overcome the disadvantages of physical relocation. The users can query the digital twin build to know the historical performance and current operating conditions of the system. It can trigger alarms as early warnings and make predictions about possible system anomalies, if and when they occur using a digital twin.\",\"PeriodicalId\":18319,\"journal\":{\"name\":\"Mathematical Problems in Engineering\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mathematical Problems in Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/8374487\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"Mathematics\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mathematical Problems in Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1155/2024/8374487","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"Mathematics","Score":null,"Total":0}
引用次数: 0
摘要
数字孪生(DT)是当今时代的一个热门词汇,在这个时代,数字化发挥着重要作用。随着太阳能电池板的出现,人们对太阳能收集的认识日益普及。由于智慧城市计划和对所有工业、教育机构等的绿色建筑证书评估,太阳能资产维护成为投资者的当务之急。在一系列降低光伏系统效率的因素中,局部遮阳问题是一个必须解决的重要问题。本文重点讨论了数字孪生框架的开发,该框架由遮阳模式和基于优化的重新配置嵌入式控制器(可在物理世界中以电子方式重新定位面板)主动驱动。实时系统是为三乘三的串联并联面板布置而创建的。通过重新配置太阳能电池阵列,拟议的开关矩阵控制器实现了最大功率,即增加了 40% 的功率输出,行电流差从 3 A 到 4 A 几乎为零,填充系数增加了 20%。这是由自然启发(等辐照分布算法)或基于拼图(摩天大楼)的优化算法决定的。切换矩阵控制器克服了物理搬迁的缺点。用户可以查询数字孪生构建,了解系统的历史性能和当前运行状况。利用数字孪生,可以触发警报作为预警,并对可能出现的系统异常情况进行预测。
Development of a Digital Twin Framework for a PV System to Resolve Partial Shading
Digital twin (DT) is a prolific buzzword in this era, where digitization plays a significant role. The perception of solar energy harvesting has been gaining popularity with the advent of solar panels. Solar asset maintenance is a need of the hour for investors because of the smart city scheme and green building certificate evaluation for all industries, educational institutions, etc. Among the list of factors that reduce PV system efficiency, the issue of partial shading is a vital distress that must be resolved. This paper focuses on the development of a digital twin framework that is proactively driven by shading patterns and a proposed optimization-based reconfiguration embedded controller that electronically relocates the panel in the physical world. The real-time system has been created for a three-by-three series parallel panel arrangement. The proposed switching matrix controller achieves the maximum power, i.e., 40% of increased power output, row current difference is made almost zero from 3 to 4 A, and fill factor increases by 20% by reconfiguring the solar array. It is done based on a decision taken by a nature-inspired (equal irradiation distribution algorithm) or puzzle-based (skyscraper) optimization algorithm. Switching matrix controllers overcome the disadvantages of physical relocation. The users can query the digital twin build to know the historical performance and current operating conditions of the system. It can trigger alarms as early warnings and make predictions about possible system anomalies, if and when they occur using a digital twin.
期刊介绍:
Mathematical Problems in Engineering is a broad-based journal which publishes articles of interest in all engineering disciplines. Mathematical Problems in Engineering publishes results of rigorous engineering research carried out using mathematical tools. Contributions containing formulations or results related to applications are also encouraged. The primary aim of Mathematical Problems in Engineering is rapid publication and dissemination of important mathematical work which has relevance to engineering. All areas of engineering are within the scope of the journal. In particular, aerospace engineering, bioengineering, chemical engineering, computer engineering, electrical engineering, industrial engineering and manufacturing systems, and mechanical engineering are of interest. Mathematical work of interest includes, but is not limited to, ordinary and partial differential equations, stochastic processes, calculus of variations, and nonlinear analysis.