仙人掌菌块、牛粪和羊粪厌氧共同消化产生沼气的实验评估

IF 1.5 4区 工程技术 Q3 ENGINEERING, CHEMICAL Brazilian Journal of Chemical Engineering Pub Date : 2024-02-14 DOI:10.1007/s43153-024-00437-z
{"title":"仙人掌菌块、牛粪和羊粪厌氧共同消化产生沼气的实验评估","authors":"","doi":"10.1007/s43153-024-00437-z","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>Anaerobic co-digestion of organic wastes and plant biomass generates an environmentally friendly energy source. Anaerobic co-digestion of cow dung (CD), goat manure (GM), and cactus cladodes (CC) was investigated under mesophilic laboratory conditions. A 14-day-long daily biogas production potential and methane content were evaluated for the three substrates co-digested at different mix ratios. Physicochemical properties showed significant differences between the raw and digested substrates. Biogas production started after the first day of anaerobic digestion for all substrates, with the peak observed near day fourteen. The anaerobic co-digestion of 66.7% GM and 33.3% CC substrate mixture produced the highest biogas yield. The cumulative biogas production study also revealed that the same substrate combination achieved better biogas yield. The anaerobic digestion of CD, GM, and CC showed a significant increase in biogas yield followed by a reduction in volatile and total solid contents. The 100% CC, 33.3% CC + 66.7% CD, 33.3% CC + 66.7% GM, and 33.33% CC + 33.33% CD + 33.33% GM anaerobic digestions achieved biogas with methane content (%) of 56.02, 72.6, 56.65, and 67.95, respectively. The 33.33% CC + 33.33% CD + 33.33% GM anaerobic co-digestion achieved the highest methane content compared to other substrates. The CC + CD + GM and CC + GM mixtures had a C/N ratio ranging from 20 to 30, contributing to better biogas yield with more methane content than substrates deviating from such a ratio. For all substrates, the methane content of the biogas ranged from 50 to 72.6%. The study also revealed that the co-digestion of CC with GM resulted in a better cummulative biogas yield and cumulative methane content.</p>","PeriodicalId":9194,"journal":{"name":"Brazilian Journal of Chemical Engineering","volume":"75 1","pages":""},"PeriodicalIF":1.5000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental evaluation of biogas production from anaerobic co-digestion of cactus cladodes, cow dung, and goat manure\",\"authors\":\"\",\"doi\":\"10.1007/s43153-024-00437-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>Anaerobic co-digestion of organic wastes and plant biomass generates an environmentally friendly energy source. Anaerobic co-digestion of cow dung (CD), goat manure (GM), and cactus cladodes (CC) was investigated under mesophilic laboratory conditions. A 14-day-long daily biogas production potential and methane content were evaluated for the three substrates co-digested at different mix ratios. Physicochemical properties showed significant differences between the raw and digested substrates. Biogas production started after the first day of anaerobic digestion for all substrates, with the peak observed near day fourteen. The anaerobic co-digestion of 66.7% GM and 33.3% CC substrate mixture produced the highest biogas yield. The cumulative biogas production study also revealed that the same substrate combination achieved better biogas yield. The anaerobic digestion of CD, GM, and CC showed a significant increase in biogas yield followed by a reduction in volatile and total solid contents. The 100% CC, 33.3% CC + 66.7% CD, 33.3% CC + 66.7% GM, and 33.33% CC + 33.33% CD + 33.33% GM anaerobic digestions achieved biogas with methane content (%) of 56.02, 72.6, 56.65, and 67.95, respectively. The 33.33% CC + 33.33% CD + 33.33% GM anaerobic co-digestion achieved the highest methane content compared to other substrates. The CC + CD + GM and CC + GM mixtures had a C/N ratio ranging from 20 to 30, contributing to better biogas yield with more methane content than substrates deviating from such a ratio. For all substrates, the methane content of the biogas ranged from 50 to 72.6%. The study also revealed that the co-digestion of CC with GM resulted in a better cummulative biogas yield and cumulative methane content.</p>\",\"PeriodicalId\":9194,\"journal\":{\"name\":\"Brazilian Journal of Chemical Engineering\",\"volume\":\"75 1\",\"pages\":\"\"},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Brazilian Journal of Chemical Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s43153-024-00437-z\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENGINEERING, CHEMICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Brazilian Journal of Chemical Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s43153-024-00437-z","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENGINEERING, CHEMICAL","Score":null,"Total":0}
引用次数: 0

摘要

摘要 有机废物和植物生物质的厌氧共同消化可产生一种环境友好型能源。研究人员在嗜中性实验室条件下对牛粪(CD)、羊粪(GM)和仙人掌(CC)进行了厌氧协同消化。对这三种基质以不同的混合比例进行协同消化后,长达 14 天的日沼气生产潜力和甲烷含量进行了评估。生基质和消化基质之间的理化特性存在显著差异。所有基质在厌氧消化第一天后就开始产生沼气,并在第 14 天达到高峰。厌氧共同消化 66.7% 的 GM 和 33.3% 的 CC 基质混合物产生的沼气产量最高。累积沼气产量研究还表明,相同的基质组合能获得更好的沼气产量。对 CD、GM 和 CC 进行厌氧消化后,沼气产量显著增加,挥发性物质和总固体含量随之减少。100% CC、33.3% CC + 66.7% CD、33.3% CC + 66.7% GM 和 33.33% CC + 33.33% CD + 33.33% GM 厌氧消化产生的沼气甲烷含量(%)分别为 56.02、72.6、56.65 和 67.95。与其他基质相比,33.33% CC + 33.33% CD + 33.33% GM 厌氧协同消化产生的甲烷含量最高。CC+CD+GM和CC+GM混合物的C/N比在20至30之间,与偏离这一比例的基质相比,能产生更好的沼气,甲烷含量更高。在所有基质中,沼气的甲烷含量在 50% 至 72.6% 之间。研究还表明,CC 与 GM 共同消化可产生更高的累积沼气产量和累积甲烷含量。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental evaluation of biogas production from anaerobic co-digestion of cactus cladodes, cow dung, and goat manure

Abstract

Anaerobic co-digestion of organic wastes and plant biomass generates an environmentally friendly energy source. Anaerobic co-digestion of cow dung (CD), goat manure (GM), and cactus cladodes (CC) was investigated under mesophilic laboratory conditions. A 14-day-long daily biogas production potential and methane content were evaluated for the three substrates co-digested at different mix ratios. Physicochemical properties showed significant differences between the raw and digested substrates. Biogas production started after the first day of anaerobic digestion for all substrates, with the peak observed near day fourteen. The anaerobic co-digestion of 66.7% GM and 33.3% CC substrate mixture produced the highest biogas yield. The cumulative biogas production study also revealed that the same substrate combination achieved better biogas yield. The anaerobic digestion of CD, GM, and CC showed a significant increase in biogas yield followed by a reduction in volatile and total solid contents. The 100% CC, 33.3% CC + 66.7% CD, 33.3% CC + 66.7% GM, and 33.33% CC + 33.33% CD + 33.33% GM anaerobic digestions achieved biogas with methane content (%) of 56.02, 72.6, 56.65, and 67.95, respectively. The 33.33% CC + 33.33% CD + 33.33% GM anaerobic co-digestion achieved the highest methane content compared to other substrates. The CC + CD + GM and CC + GM mixtures had a C/N ratio ranging from 20 to 30, contributing to better biogas yield with more methane content than substrates deviating from such a ratio. For all substrates, the methane content of the biogas ranged from 50 to 72.6%. The study also revealed that the co-digestion of CC with GM resulted in a better cummulative biogas yield and cumulative methane content.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Brazilian Journal of Chemical Engineering
Brazilian Journal of Chemical Engineering 工程技术-工程:化工
CiteScore
2.50
自引率
0.00%
发文量
84
审稿时长
6.8 months
期刊介绍: The Brazilian Journal of Chemical Engineering is a quarterly publication of the Associação Brasileira de Engenharia Química (Brazilian Society of Chemical Engineering - ABEQ) aiming at publishing papers reporting on basic and applied research and innovation in the field of chemical engineering and related areas.
期刊最新文献
C4 hydrocarbons to value-added chemicals over Keggin-type heteropolyacids: structure-properties, reaction parameters, and mechanisms Utilization of blue light-emitting diodes in Ensifer meliloti cultivation for enhanced production of antioxidant biopolymers Correlation of the solubility of isoniazid in some aqueous cosolvent mixtures using different mathematical models Doehlert matrix-based optimization of degradation of Rhodamine B in a swirling flow photolytic reactor operated in recirculation mode Application of DieselB10 formulations with short-chain alcohols in diesel cycle engines: phase equilibrium, physicochemical and thermodynamic properties and power curves
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1