Mikio Morii, Yoshitomo Maeda, Hisamitsu Awaki, Kouichi Hagino, Manabu Ishida, Koji Mori
{"title":"蟹状星云被蟹脉冲星眩晕时的 Hitomi HXT 去卷积成像","authors":"Mikio Morii, Yoshitomo Maeda, Hisamitsu Awaki, Kouichi Hagino, Manabu Ishida, Koji Mori","doi":"10.1093/pasj/psae008","DOIUrl":null,"url":null,"abstract":"We develop a new deconvolution method to recover the precise Crab Nebula image taken by the Hitomi HXT, suppressing the artifact due to the bright Crab pulsar. We extend the Richardson–Lucy method, introducing two components corresponding to the nebula and pulsar with regularization for smoothness and flux, respectively, and performing simultaneous deconvolution of multi-pulse-phase images. The structures, including the torus and jets, seen in the deconvolved nebula image at the lowest energy band of 3.6–15 keV appear consistent with those identified in the high-resolution Chandra X-ray image. Above 15 keV, we confirm NuSTAR’s findings that the nebula size decreases in higher energy bands. We find that the north-east side of the nebula is fainter in higher energy bands. Our deconvolution method is applicable for any telescope images of faint diffuse objects containing a bright point source.","PeriodicalId":20733,"journal":{"name":"Publications of the Astronomical Society of Japan","volume":"19 1","pages":""},"PeriodicalIF":2.2000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Hitomi HXT deconvolution imaging of the Crab Nebula dazzled by the Crab pulsar\",\"authors\":\"Mikio Morii, Yoshitomo Maeda, Hisamitsu Awaki, Kouichi Hagino, Manabu Ishida, Koji Mori\",\"doi\":\"10.1093/pasj/psae008\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We develop a new deconvolution method to recover the precise Crab Nebula image taken by the Hitomi HXT, suppressing the artifact due to the bright Crab pulsar. We extend the Richardson–Lucy method, introducing two components corresponding to the nebula and pulsar with regularization for smoothness and flux, respectively, and performing simultaneous deconvolution of multi-pulse-phase images. The structures, including the torus and jets, seen in the deconvolved nebula image at the lowest energy band of 3.6–15 keV appear consistent with those identified in the high-resolution Chandra X-ray image. Above 15 keV, we confirm NuSTAR’s findings that the nebula size decreases in higher energy bands. We find that the north-east side of the nebula is fainter in higher energy bands. Our deconvolution method is applicable for any telescope images of faint diffuse objects containing a bright point source.\",\"PeriodicalId\":20733,\"journal\":{\"name\":\"Publications of the Astronomical Society of Japan\",\"volume\":\"19 1\",\"pages\":\"\"},\"PeriodicalIF\":2.2000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Publications of the Astronomical Society of Japan\",\"FirstCategoryId\":\"101\",\"ListUrlMain\":\"https://doi.org/10.1093/pasj/psae008\",\"RegionNum\":4,\"RegionCategory\":\"物理与天体物理\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ASTRONOMY & ASTROPHYSICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Publications of the Astronomical Society of Japan","FirstCategoryId":"101","ListUrlMain":"https://doi.org/10.1093/pasj/psae008","RegionNum":4,"RegionCategory":"物理与天体物理","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ASTRONOMY & ASTROPHYSICS","Score":null,"Total":0}
Hitomi HXT deconvolution imaging of the Crab Nebula dazzled by the Crab pulsar
We develop a new deconvolution method to recover the precise Crab Nebula image taken by the Hitomi HXT, suppressing the artifact due to the bright Crab pulsar. We extend the Richardson–Lucy method, introducing two components corresponding to the nebula and pulsar with regularization for smoothness and flux, respectively, and performing simultaneous deconvolution of multi-pulse-phase images. The structures, including the torus and jets, seen in the deconvolved nebula image at the lowest energy band of 3.6–15 keV appear consistent with those identified in the high-resolution Chandra X-ray image. Above 15 keV, we confirm NuSTAR’s findings that the nebula size decreases in higher energy bands. We find that the north-east side of the nebula is fainter in higher energy bands. Our deconvolution method is applicable for any telescope images of faint diffuse objects containing a bright point source.
期刊介绍:
Publications of the Astronomical Society of Japan (PASJ) publishes the results of original research in all aspects of astronomy, astrophysics, and fields closely related to them.