重塑水泥土壤力学行为的实验研究

IF 0.8 4区 工程技术 Q4 ENGINEERING, GEOLOGICAL Soil Mechanics and Foundation Engineering Pub Date : 2024-02-14 DOI:10.1007/s11204-024-09928-0
{"title":"重塑水泥土壤力学行为的实验研究","authors":"","doi":"10.1007/s11204-024-09928-0","DOIUrl":null,"url":null,"abstract":"<p>As a common soil-improvement method, cement-stabilized soil is widely utilized in ground treatment and resource utilization of in-situ muds. The unconfined compressive strength (UCS) and strength recovery of a remolded cement soil were studied. The test results show that the UCS values of remolded cement soil are significantly lower than those of the corresponding undamaged cement-stabilized soil. The strength loss of remolded cement soil is influenced by cement content and curing age; difference in remolding time has little effect for the same total curing age. On the basis of the test results, a formula to predict UCS for remolded cement soil is proposed. The microscopic mechanism of the strength change of remolded cement soil was analyzed by scanning electron microscopy. The particle spacing of remolded cement soil was closer than that of cement-stabilized soil, but the adhesiveness of hydration products was reduced, which weakened its structure.</p>","PeriodicalId":21918,"journal":{"name":"Soil Mechanics and Foundation Engineering","volume":null,"pages":null},"PeriodicalIF":0.8000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Experimental Study on Mechanical Behavior of Remolded Cement Soil\",\"authors\":\"\",\"doi\":\"10.1007/s11204-024-09928-0\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>As a common soil-improvement method, cement-stabilized soil is widely utilized in ground treatment and resource utilization of in-situ muds. The unconfined compressive strength (UCS) and strength recovery of a remolded cement soil were studied. The test results show that the UCS values of remolded cement soil are significantly lower than those of the corresponding undamaged cement-stabilized soil. The strength loss of remolded cement soil is influenced by cement content and curing age; difference in remolding time has little effect for the same total curing age. On the basis of the test results, a formula to predict UCS for remolded cement soil is proposed. The microscopic mechanism of the strength change of remolded cement soil was analyzed by scanning electron microscopy. The particle spacing of remolded cement soil was closer than that of cement-stabilized soil, but the adhesiveness of hydration products was reduced, which weakened its structure.</p>\",\"PeriodicalId\":21918,\"journal\":{\"name\":\"Soil Mechanics and Foundation Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Soil Mechanics and Foundation Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11204-024-09928-0\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENGINEERING, GEOLOGICAL\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Soil Mechanics and Foundation Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11204-024-09928-0","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENGINEERING, GEOLOGICAL","Score":null,"Total":0}
引用次数: 0

摘要

作为一种常见的土壤改良方法,水泥土稳定土被广泛应用于地基处理和原位泥资源化利用。研究了重塑水泥土的无侧限抗压强度(UCS)和强度恢复情况。试验结果表明,重塑水泥土的无侧限抗压强度值明显低于相应的未破坏水泥土。重塑水泥土的强度损失受水泥含量和固化龄期的影响;在总固化龄期相同的情况下,重塑时间的差异影响不大。根据试验结果,提出了重塑水泥土 UCS 的预测公式。利用扫描电子显微镜分析了重塑水泥土强度变化的微观机理。重塑水泥土的颗粒间距比水泥土稳定土更紧密,但水化产物的粘附性降低,从而削弱了其结构。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Experimental Study on Mechanical Behavior of Remolded Cement Soil

As a common soil-improvement method, cement-stabilized soil is widely utilized in ground treatment and resource utilization of in-situ muds. The unconfined compressive strength (UCS) and strength recovery of a remolded cement soil were studied. The test results show that the UCS values of remolded cement soil are significantly lower than those of the corresponding undamaged cement-stabilized soil. The strength loss of remolded cement soil is influenced by cement content and curing age; difference in remolding time has little effect for the same total curing age. On the basis of the test results, a formula to predict UCS for remolded cement soil is proposed. The microscopic mechanism of the strength change of remolded cement soil was analyzed by scanning electron microscopy. The particle spacing of remolded cement soil was closer than that of cement-stabilized soil, but the adhesiveness of hydration products was reduced, which weakened its structure.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.50
自引率
12.50%
发文量
65
审稿时长
6 months
期刊介绍: Soil Mechanics and Foundation Engineering provides the Western engineer with a look at Russian advances in heavy construction techniques. Detailed contributions by experienced civil engineers offer insights into current difficulties in the field, applicable innovative solutions, and recently developed guidelines for soil analysis and foundation design.
期刊最新文献
Strength Degradation of Fractured Sandstone After Thawing of an Inclined Shaft Produced by Artificial Freezing Numerical Analysis of Pullout Bearing Capacity of End-Bearing Torpedo Anchors A Method for Calculating the Amount of Unfrozen Water in Frozen Saline Soils The Effect of Temperature Pathways on Unfrozen Water and Thermal Parameters of Frozen Soils Permeability Characteristics of Sedimentary Fine Tailings Including the Degree of Compaction
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1