结构问题的瘪域分解法

IF 1.4 4区 工程技术 Q2 ENGINEERING, MULTIDISCIPLINARY Journal of Engineering Mathematics Pub Date : 2024-02-08 DOI:10.1007/s10665-023-10322-2
Hiroshi Akiba
{"title":"结构问题的瘪域分解法","authors":"Hiroshi Akiba","doi":"10.1007/s10665-023-10322-2","DOIUrl":null,"url":null,"abstract":"<p>The paper presents a fast and stable solver algorithm for structural problems. The point is the distance between the eigenvector of the constrained stiffness matrix and the unconstrained matrix. The coarse motions are close to the kernel of the unconstrained matrix. We use lower-frequency deformation modes to construct an iterative solver algorithm through domain decomposition expressing near-rigid-body motions, deflation algorithms, and two-level algorithms. We remove the coarse space from the solution space and hand over the iteration space to the fine space. Our solver is parallelized, and the solver thus has two sets of domain decomposition. One decomposition generates the coarse space, and the other is for parallelization. The basic framework of the solver is the parallel conjugate gradient (CG) method on the fine space. We use the CG method for the basic framework instead of the (simplest) domain decomposition method. We conducted benchmark tests using elastic static analysis for thin plate models. A comparison with the standard CG solver results shows the new solver’s high-speed performance and remarkable stability.</p>","PeriodicalId":50204,"journal":{"name":"Journal of Engineering Mathematics","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deflated domain decomposition method for structural problems\",\"authors\":\"Hiroshi Akiba\",\"doi\":\"10.1007/s10665-023-10322-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The paper presents a fast and stable solver algorithm for structural problems. The point is the distance between the eigenvector of the constrained stiffness matrix and the unconstrained matrix. The coarse motions are close to the kernel of the unconstrained matrix. We use lower-frequency deformation modes to construct an iterative solver algorithm through domain decomposition expressing near-rigid-body motions, deflation algorithms, and two-level algorithms. We remove the coarse space from the solution space and hand over the iteration space to the fine space. Our solver is parallelized, and the solver thus has two sets of domain decomposition. One decomposition generates the coarse space, and the other is for parallelization. The basic framework of the solver is the parallel conjugate gradient (CG) method on the fine space. We use the CG method for the basic framework instead of the (simplest) domain decomposition method. We conducted benchmark tests using elastic static analysis for thin plate models. A comparison with the standard CG solver results shows the new solver’s high-speed performance and remarkable stability.</p>\",\"PeriodicalId\":50204,\"journal\":{\"name\":\"Journal of Engineering Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Engineering Mathematics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s10665-023-10322-2\",\"RegionNum\":4,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Engineering Mathematics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s10665-023-10322-2","RegionNum":4,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种快速、稳定的结构问题求解算法。点是约束刚度矩阵的特征向量与非约束矩阵之间的距离。粗运动接近无约束矩阵的核。我们利用低频变形模式,通过域分解表达近刚体运动、放缩算法和两级算法来构建迭代求解算法。我们从求解空间中移除粗空间,并将迭代空间移交给细空间。我们的求解器是并行化的,因此求解器有两套域分解。一套分解生成粗空间,另一套用于并行化。求解器的基本框架是精细空间上的并行共轭梯度法(CG)。我们在基本框架中使用共轭梯度法,而不是(最简单的)域分解法。我们使用薄板模型的弹性静态分析进行了基准测试。与标准共轭梯度求解器的结果对比显示,新求解器具有高速性能和显著的稳定性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deflated domain decomposition method for structural problems

The paper presents a fast and stable solver algorithm for structural problems. The point is the distance between the eigenvector of the constrained stiffness matrix and the unconstrained matrix. The coarse motions are close to the kernel of the unconstrained matrix. We use lower-frequency deformation modes to construct an iterative solver algorithm through domain decomposition expressing near-rigid-body motions, deflation algorithms, and two-level algorithms. We remove the coarse space from the solution space and hand over the iteration space to the fine space. Our solver is parallelized, and the solver thus has two sets of domain decomposition. One decomposition generates the coarse space, and the other is for parallelization. The basic framework of the solver is the parallel conjugate gradient (CG) method on the fine space. We use the CG method for the basic framework instead of the (simplest) domain decomposition method. We conducted benchmark tests using elastic static analysis for thin plate models. A comparison with the standard CG solver results shows the new solver’s high-speed performance and remarkable stability.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Engineering Mathematics
Journal of Engineering Mathematics 工程技术-工程:综合
CiteScore
2.10
自引率
7.70%
发文量
44
审稿时长
6 months
期刊介绍: The aim of this journal is to promote the application of mathematics to problems from engineering and the applied sciences. It also aims to emphasize the intrinsic unity, through mathematics, of the fundamental problems of applied and engineering science. The scope of the journal includes the following: • Mathematics: Ordinary and partial differential equations, Integral equations, Asymptotics, Variational and functional−analytic methods, Numerical analysis, Computational methods. • Applied Fields: Continuum mechanics, Stability theory, Wave propagation, Diffusion, Heat and mass transfer, Free−boundary problems; Fluid mechanics: Aero− and hydrodynamics, Boundary layers, Shock waves, Fluid machinery, Fluid−structure interactions, Convection, Combustion, Acoustics, Multi−phase flows, Transition and turbulence, Creeping flow, Rheology, Porous−media flows, Ocean engineering, Atmospheric engineering, Non-Newtonian flows, Ship hydrodynamics; Solid mechanics: Elasticity, Classical mechanics, Nonlinear mechanics, Vibrations, Plates and shells, Fracture mechanics; Biomedical engineering, Geophysical engineering, Reaction−diffusion problems; and related areas. The Journal also publishes occasional invited ''Perspectives'' articles by distinguished researchers reviewing and bringing their authoritative overview to recent developments in topics of current interest in their area of expertise. Authors wishing to suggest topics for such articles should contact the Editors-in-Chief directly. Prospective authors are encouraged to consult recent issues of the journal in order to judge whether or not their manuscript is consistent with the style and content of published papers.
期刊最新文献
Erosion of surfaces by trapped vortices Nanoparticle uptake by a semi-permeable, spherical cell from an external planar diffusive field. II. Numerical study of temporal and spatial development validated using FEM On the positive self-similar solutions of the boundary-layer wedge flow problem of a power-law fluid Experimental and theoretical investigation of impinging droplet solidification at moderate impact velocities Reflection and transmission of SH waves at the interface of a V-notch and a piezoelectric/piezomagnetic half-space
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1