Hussam Al Daas, Grey Ballard, Laura Grigori, Suraj Kumar, Kathryn Rouse
{"title":"多重张量-时间-矩阵计算的通信下限和最优算法","authors":"Hussam Al Daas, Grey Ballard, Laura Grigori, Suraj Kumar, Kathryn Rouse","doi":"10.1137/22m1510443","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 450-477, March 2024. <br/> Abstract. Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine how much data movement is required (under mild conditions) to perform the Multi-TTM computation in parallel. The crux of the proof relies on analytically solving a constrained, nonlinear optimization problem. We also present a parallel algorithm to perform this computation that organizes the processors into a logical grid with twice as many modes as the input tensor. We show that, with correct choices of grid dimensions, the communication cost of the algorithm attains the lower bounds and is therefore communication optimal. Finally, we show that our algorithm can significantly reduce communication compared to the straightforward approach of expressing the computation as a sequence of tensor-times-matrix operations when the input and output tensors vary greatly in size.","PeriodicalId":49538,"journal":{"name":"SIAM Journal on Matrix Analysis and Applications","volume":null,"pages":null},"PeriodicalIF":1.5000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Communication Lower Bounds and Optimal Algorithms for Multiple Tensor-Times-Matrix Computation\",\"authors\":\"Hussam Al Daas, Grey Ballard, Laura Grigori, Suraj Kumar, Kathryn Rouse\",\"doi\":\"10.1137/22m1510443\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 450-477, March 2024. <br/> Abstract. Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine how much data movement is required (under mild conditions) to perform the Multi-TTM computation in parallel. The crux of the proof relies on analytically solving a constrained, nonlinear optimization problem. We also present a parallel algorithm to perform this computation that organizes the processors into a logical grid with twice as many modes as the input tensor. We show that, with correct choices of grid dimensions, the communication cost of the algorithm attains the lower bounds and is therefore communication optimal. Finally, we show that our algorithm can significantly reduce communication compared to the straightforward approach of expressing the computation as a sequence of tensor-times-matrix operations when the input and output tensors vary greatly in size.\",\"PeriodicalId\":49538,\"journal\":{\"name\":\"SIAM Journal on Matrix Analysis and Applications\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.5000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Matrix Analysis and Applications\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m1510443\",\"RegionNum\":2,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS, APPLIED\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Matrix Analysis and Applications","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m1510443","RegionNum":2,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS, APPLIED","Score":null,"Total":0}
Communication Lower Bounds and Optimal Algorithms for Multiple Tensor-Times-Matrix Computation
SIAM Journal on Matrix Analysis and Applications, Volume 45, Issue 1, Page 450-477, March 2024. Abstract. Multiple tensor-times-matrix (Multi-TTM) is a key computation in algorithms for computing and operating with the Tucker tensor decomposition, which is frequently used in multidimensional data analysis. We establish communication lower bounds that determine how much data movement is required (under mild conditions) to perform the Multi-TTM computation in parallel. The crux of the proof relies on analytically solving a constrained, nonlinear optimization problem. We also present a parallel algorithm to perform this computation that organizes the processors into a logical grid with twice as many modes as the input tensor. We show that, with correct choices of grid dimensions, the communication cost of the algorithm attains the lower bounds and is therefore communication optimal. Finally, we show that our algorithm can significantly reduce communication compared to the straightforward approach of expressing the computation as a sequence of tensor-times-matrix operations when the input and output tensors vary greatly in size.
期刊介绍:
The SIAM Journal on Matrix Analysis and Applications contains research articles in matrix analysis and its applications and papers of interest to the numerical linear algebra community. Applications include such areas as signal processing, systems and control theory, statistics, Markov chains, and mathematical biology. Also contains papers that are of a theoretical nature but have a possible impact on applications.