{"title":"聚苯胺修饰的 Ni-TiO2 表面光催化降解孔雀石绿染料的动力学和机理研究","authors":"Girmaye Asefa, Dunkana Negussa, Gemechu Lemessa, Tibebu Alemu","doi":"10.1155/2024/5259089","DOIUrl":null,"url":null,"abstract":"Synthetic organic dyes are coloring agents used in various industries. Despite the fact that they offer exciting colors and long-lasting effects, certain organic dyes can have harmful impacts on human health and aquatic ecosystems. This study investigates the photocatalytic degradation of malachite green dye using Ni–TiO<sub>2</sub> nanoparticles (NPs) and Ni–TiO<sub>2</sub>/PANI nanocomposites (NCs) in various reaction conditions. The surface and compositional change of synthesized photocatalysts were characterized by XRD, FTIR, AAS, and UV–vis spectrophotometer. Accordingly, the XRD results signify the crystal structure of photocatalysts found to be tetragonal anatase phase while the FT-IR spectra indicate the titanium has predominantly form a coordination compound upon reaction with nitrogen atom through weakening the bond strength between C═N, C═C, and C─N in the PANI. The UV–vis measurement shows that the energy bandgaps were decreased from 3.20 to 2.77 eV and 2.59 eV for Ni–TiO<sub>2</sub> NPs and Ni–TiO<sub>2</sub>/PANI NCs, respectively. From AAS data, the authors confirmed that Ni metal has significantly existed in the aforementioned photocatalysts after the calcination process. The photocatalytic degradation of Ni–TiO<sub>2</sub> NPs and Ni–TiO<sub>2</sub>/PANI NCs on the model dye has studied and their efficiency was 94.22% and 99.09%, respectively. The photocatalytic degradation follows pseudo-first order with 2.23 × 10<sup>−2</sup> min<sup>−1</sup> reaction rate at optimum conditions of pH 8.5, initial dye concentration of 0.2 g/L, catalyst load of 0.2 g/L, and irradiation time of 90 min. With this, the outstanding result recorded using Ni–TiO<sub>2</sub>/PANI NCs is ascribed to the smaller particle size as compared to Ni–TiO<sub>2</sub> NPs, and it is found to be the promising photocatalyst for the removal of wastewater containing organic dyes.","PeriodicalId":16442,"journal":{"name":"Journal of Nanomaterials","volume":"92 1","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Study of Photocatalytic Degradation Kinetics and Mechanism of Malachite Green Dye on Ni–TiO2 Surface Modified with Polyaniline\",\"authors\":\"Girmaye Asefa, Dunkana Negussa, Gemechu Lemessa, Tibebu Alemu\",\"doi\":\"10.1155/2024/5259089\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Synthetic organic dyes are coloring agents used in various industries. Despite the fact that they offer exciting colors and long-lasting effects, certain organic dyes can have harmful impacts on human health and aquatic ecosystems. This study investigates the photocatalytic degradation of malachite green dye using Ni–TiO<sub>2</sub> nanoparticles (NPs) and Ni–TiO<sub>2</sub>/PANI nanocomposites (NCs) in various reaction conditions. The surface and compositional change of synthesized photocatalysts were characterized by XRD, FTIR, AAS, and UV–vis spectrophotometer. Accordingly, the XRD results signify the crystal structure of photocatalysts found to be tetragonal anatase phase while the FT-IR spectra indicate the titanium has predominantly form a coordination compound upon reaction with nitrogen atom through weakening the bond strength between C═N, C═C, and C─N in the PANI. The UV–vis measurement shows that the energy bandgaps were decreased from 3.20 to 2.77 eV and 2.59 eV for Ni–TiO<sub>2</sub> NPs and Ni–TiO<sub>2</sub>/PANI NCs, respectively. From AAS data, the authors confirmed that Ni metal has significantly existed in the aforementioned photocatalysts after the calcination process. The photocatalytic degradation of Ni–TiO<sub>2</sub> NPs and Ni–TiO<sub>2</sub>/PANI NCs on the model dye has studied and their efficiency was 94.22% and 99.09%, respectively. The photocatalytic degradation follows pseudo-first order with 2.23 × 10<sup>−2</sup> min<sup>−1</sup> reaction rate at optimum conditions of pH 8.5, initial dye concentration of 0.2 g/L, catalyst load of 0.2 g/L, and irradiation time of 90 min. With this, the outstanding result recorded using Ni–TiO<sub>2</sub>/PANI NCs is ascribed to the smaller particle size as compared to Ni–TiO<sub>2</sub> NPs, and it is found to be the promising photocatalyst for the removal of wastewater containing organic dyes.\",\"PeriodicalId\":16442,\"journal\":{\"name\":\"Journal of Nanomaterials\",\"volume\":\"92 1\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Nanomaterials\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1155/2024/5259089\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"Materials Science\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Nanomaterials","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1155/2024/5259089","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"Materials Science","Score":null,"Total":0}
The Study of Photocatalytic Degradation Kinetics and Mechanism of Malachite Green Dye on Ni–TiO2 Surface Modified with Polyaniline
Synthetic organic dyes are coloring agents used in various industries. Despite the fact that they offer exciting colors and long-lasting effects, certain organic dyes can have harmful impacts on human health and aquatic ecosystems. This study investigates the photocatalytic degradation of malachite green dye using Ni–TiO2 nanoparticles (NPs) and Ni–TiO2/PANI nanocomposites (NCs) in various reaction conditions. The surface and compositional change of synthesized photocatalysts were characterized by XRD, FTIR, AAS, and UV–vis spectrophotometer. Accordingly, the XRD results signify the crystal structure of photocatalysts found to be tetragonal anatase phase while the FT-IR spectra indicate the titanium has predominantly form a coordination compound upon reaction with nitrogen atom through weakening the bond strength between C═N, C═C, and C─N in the PANI. The UV–vis measurement shows that the energy bandgaps were decreased from 3.20 to 2.77 eV and 2.59 eV for Ni–TiO2 NPs and Ni–TiO2/PANI NCs, respectively. From AAS data, the authors confirmed that Ni metal has significantly existed in the aforementioned photocatalysts after the calcination process. The photocatalytic degradation of Ni–TiO2 NPs and Ni–TiO2/PANI NCs on the model dye has studied and their efficiency was 94.22% and 99.09%, respectively. The photocatalytic degradation follows pseudo-first order with 2.23 × 10−2 min−1 reaction rate at optimum conditions of pH 8.5, initial dye concentration of 0.2 g/L, catalyst load of 0.2 g/L, and irradiation time of 90 min. With this, the outstanding result recorded using Ni–TiO2/PANI NCs is ascribed to the smaller particle size as compared to Ni–TiO2 NPs, and it is found to be the promising photocatalyst for the removal of wastewater containing organic dyes.
期刊介绍:
The overall aim of the Journal of Nanomaterials is to bring science and applications together on nanoscale and nanostructured materials with emphasis on synthesis, processing, characterization, and applications of materials containing true nanosize dimensions or nanostructures that enable novel/enhanced properties or functions. It is directed at both academic researchers and practicing engineers. Journal of Nanomaterials will highlight the continued growth and new challenges in nanomaterials science, engineering, and nanotechnology, both for application development and for basic research.