数学]类偏置排列的快速混合

IF 0.9 3区 数学 Q2 MATHEMATICS SIAM Journal on Discrete Mathematics Pub Date : 2024-02-06 DOI:10.1137/22m148063x
Sarah Miracle, Amanda Pascoe Streib
{"title":"数学]类偏置排列的快速混合","authors":"Sarah Miracle, Amanda Pascoe Streib","doi":"10.1137/22m148063x","DOIUrl":null,"url":null,"abstract":"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 702-725, March 2024. <br/> Abstract. In this paper, we study a biased version of the nearest-neighbor transposition Markov chain on the set of permutations where neighboring elements [math] and [math] are placed in order [math] with probability [math]. Our goal is to identify the class of parameter sets [math] for which this Markov chain is rapidly mixing. Specifically, we consider the open conjecture of Jim Fill [Background on the Gap Problem (2003) and An Interesting Spectral Gap Problem (2003)] that all monotone, positively biased distributions are rapidly mixing. We resolve Fill’s conjecture in the affirmative for distributions arising from [math]-class particle processes, where the elements are divided into [math] classes and the probability of exchanging neighboring elements depends on the particular classes the elements are in. We further require that [math] is a constant and that all probabilities between elements in different classes are bounded away from [math]. These particle processes arise in the context of self-organizing lists, and our result also applies beyond permutations to the setting where all particles in a class are indistinguishable. Our work generalizes recent work by Haddadan and Winkler [Mixing of permutations by biased transposition (2017)] studying 3-class particle processes. Additionally, we show that a broader class of distributions based on trees is also rapidly mixing, which generalizes a class analyzed by Bhakta et al. [Mixing times of Markov chains for self-organizing lists and biased permutations (2013)]. Our proof involves analyzing a generalized biased exclusion process, which is a nearest-neighbor transposition chain applied to a 2-particle system. Biased exclusion processes are of independent interest, with applications in self-assembly. We generalize the results of Greenberg et al. [Sampling biased lattice configurations using exponential metrics (2009)] and Benjamini et al. [Mixing times of the biased card shuffling and the asymmetric exclusion process (2005)] on biased exclusion processes to allow the probability of swapping neighboring elements to depend on the entire system, as long as the minimum bias is bounded away from 1.","PeriodicalId":49530,"journal":{"name":"SIAM Journal on Discrete Mathematics","volume":null,"pages":null},"PeriodicalIF":0.9000,"publicationDate":"2024-02-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Rapid Mixing of [math]-Class Biased Permutations\",\"authors\":\"Sarah Miracle, Amanda Pascoe Streib\",\"doi\":\"10.1137/22m148063x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 702-725, March 2024. <br/> Abstract. In this paper, we study a biased version of the nearest-neighbor transposition Markov chain on the set of permutations where neighboring elements [math] and [math] are placed in order [math] with probability [math]. Our goal is to identify the class of parameter sets [math] for which this Markov chain is rapidly mixing. Specifically, we consider the open conjecture of Jim Fill [Background on the Gap Problem (2003) and An Interesting Spectral Gap Problem (2003)] that all monotone, positively biased distributions are rapidly mixing. We resolve Fill’s conjecture in the affirmative for distributions arising from [math]-class particle processes, where the elements are divided into [math] classes and the probability of exchanging neighboring elements depends on the particular classes the elements are in. We further require that [math] is a constant and that all probabilities between elements in different classes are bounded away from [math]. These particle processes arise in the context of self-organizing lists, and our result also applies beyond permutations to the setting where all particles in a class are indistinguishable. Our work generalizes recent work by Haddadan and Winkler [Mixing of permutations by biased transposition (2017)] studying 3-class particle processes. Additionally, we show that a broader class of distributions based on trees is also rapidly mixing, which generalizes a class analyzed by Bhakta et al. [Mixing times of Markov chains for self-organizing lists and biased permutations (2013)]. Our proof involves analyzing a generalized biased exclusion process, which is a nearest-neighbor transposition chain applied to a 2-particle system. Biased exclusion processes are of independent interest, with applications in self-assembly. We generalize the results of Greenberg et al. [Sampling biased lattice configurations using exponential metrics (2009)] and Benjamini et al. [Mixing times of the biased card shuffling and the asymmetric exclusion process (2005)] on biased exclusion processes to allow the probability of swapping neighboring elements to depend on the entire system, as long as the minimum bias is bounded away from 1.\",\"PeriodicalId\":49530,\"journal\":{\"name\":\"SIAM Journal on Discrete Mathematics\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.9000,\"publicationDate\":\"2024-02-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SIAM Journal on Discrete Mathematics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1137/22m148063x\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SIAM Journal on Discrete Mathematics","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1137/22m148063x","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
引用次数: 0

摘要

SIAM 离散数学杂志》,第 38 卷第 1 期,第 702-725 页,2024 年 3 月。 摘要在本文中,我们研究了最近邻换位马尔可夫链在排列集合上的偏置版本,其中相邻元素[math]和[math]以概率[math]按顺序[math]排列。我们的目标是找出该马尔可夫链快速混合的参数集 [math] 类别。具体来说,我们考虑了吉姆-菲尔(Jim Fill)的公开猜想[《差距问题背景》(2003)和《有趣的谱差距问题》(2003)],即所有单调、正偏分布都是快速混合的。对于[math]类粒子过程产生的分布,我们以肯定的态度解决了菲尔的猜想,在[math]类粒子过程中,元素被划分为[math]类,相邻元素交换的概率取决于元素所处的特定类。我们进一步要求[math]是一个常数,不同类别元素之间的所有概率都远离[math]。这些粒子过程是在自组织列表的背景下产生的,我们的结果也超越了排列,适用于一类中所有粒子都无法区分的情况。我们的工作概括了 Haddadan 和 Winkler [Mixing of permutations by biased transposition (2017)]最近研究 3 类粒子过程的工作。此外,我们还证明了基于树的一类更广泛的分布也是快速混合的,这也概括了 Bhakta 等人【自组织列表和偏置排列的马尔可夫链的混合时间(2013 年)】所分析的一类分布。我们的证明涉及对广义偏置排除过程的分析,该过程是应用于双粒子系统的近邻转置链。偏置排除过程具有独立的意义,可应用于自组装。我们推广了格林伯格等人(Greenberg et al. [Sampling biased lattice configurations using exponential metrics (2009)])和本杰明尼等人(Benjamini et al. [Mixing times of the biased card shuffling and the asymmetric exclusion process (2005)])关于偏置排除过程的研究成果,只要最小偏置离 1 有界,就允许交换相邻元素的概率取决于整个系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Rapid Mixing of [math]-Class Biased Permutations
SIAM Journal on Discrete Mathematics, Volume 38, Issue 1, Page 702-725, March 2024.
Abstract. In this paper, we study a biased version of the nearest-neighbor transposition Markov chain on the set of permutations where neighboring elements [math] and [math] are placed in order [math] with probability [math]. Our goal is to identify the class of parameter sets [math] for which this Markov chain is rapidly mixing. Specifically, we consider the open conjecture of Jim Fill [Background on the Gap Problem (2003) and An Interesting Spectral Gap Problem (2003)] that all monotone, positively biased distributions are rapidly mixing. We resolve Fill’s conjecture in the affirmative for distributions arising from [math]-class particle processes, where the elements are divided into [math] classes and the probability of exchanging neighboring elements depends on the particular classes the elements are in. We further require that [math] is a constant and that all probabilities between elements in different classes are bounded away from [math]. These particle processes arise in the context of self-organizing lists, and our result also applies beyond permutations to the setting where all particles in a class are indistinguishable. Our work generalizes recent work by Haddadan and Winkler [Mixing of permutations by biased transposition (2017)] studying 3-class particle processes. Additionally, we show that a broader class of distributions based on trees is also rapidly mixing, which generalizes a class analyzed by Bhakta et al. [Mixing times of Markov chains for self-organizing lists and biased permutations (2013)]. Our proof involves analyzing a generalized biased exclusion process, which is a nearest-neighbor transposition chain applied to a 2-particle system. Biased exclusion processes are of independent interest, with applications in self-assembly. We generalize the results of Greenberg et al. [Sampling biased lattice configurations using exponential metrics (2009)] and Benjamini et al. [Mixing times of the biased card shuffling and the asymmetric exclusion process (2005)] on biased exclusion processes to allow the probability of swapping neighboring elements to depend on the entire system, as long as the minimum bias is bounded away from 1.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
CiteScore
1.90
自引率
0.00%
发文量
124
审稿时长
4-8 weeks
期刊介绍: SIAM Journal on Discrete Mathematics (SIDMA) publishes research papers of exceptional quality in pure and applied discrete mathematics, broadly interpreted. The journal''s focus is primarily theoretical rather than empirical, but the editors welcome papers that evolve from or have potential application to real-world problems. Submissions must be clearly written and make a significant contribution. Topics include but are not limited to: properties of and extremal problems for discrete structures combinatorial optimization, including approximation algorithms algebraic and enumerative combinatorics coding and information theory additive, analytic combinatorics and number theory combinatorial matrix theory and spectral graph theory design and analysis of algorithms for discrete structures discrete problems in computational complexity discrete and computational geometry discrete methods in computational biology, and bioinformatics probabilistic methods and randomized algorithms.
期刊最新文献
Cliques in High-Dimensional Geometric Inhomogeneous Random Graphs On the Minimum Number of Arcs in \(\boldsymbol{k}\)-Dicritical Oriented Graphs A Stability Result of the Pósa Lemma A Stability Result for \(\boldsymbol{C}_{\boldsymbol{2k+1}}\)-Free Graphs Tuza’s Conjecture for Binary Geometries
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1