基于合成生成对抗网络生成清晰度更高的多光谱卫星图像

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-01 DOI:10.1117/1.jrs.18.014510
Lydia Abady, Mauro Barni, Andrea Garzelli, Benedetta Tondi
{"title":"基于合成生成对抗网络生成清晰度更高的多光谱卫星图像","authors":"Lydia Abady, Mauro Barni, Andrea Garzelli, Benedetta Tondi","doi":"10.1117/1.jrs.18.014510","DOIUrl":null,"url":null,"abstract":"The generation of synthetic multispectral satellite images has not yet reached the quality level achievable in other domains, such as the generation and manipulation of face images. Part of the difficulty stems from the need to generate consistent data across the entire electromagnetic spectrum covered by such images at radiometric resolutions higher than those typically used in multimedia applications. The different spatial resolution of image bands corresponding to different wavelengths poses additional problems, whose main effect is a lack of spatial details in the synthetic images with respect to the original ones. We propose two generative adversarial networks-based architectures explicitly thought to generate synthetic satellite imagery by applying style transfer to 13-band Sentinel-2 level1-C images. To avoid losing the finer spatial details and improve the sharpness of the generated images, we introduce a pansharpening-like approach, whereby the spatial structures of the input image are transferred to the style-transferred images without introducing visible artifacts. The results we got by applying the proposed architectures to transform barren images into vegetation images and vice versa and to transform summer (res. winter) images into winter (res. summer) images, which confirm the validity of the proposed solution.","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Generation of synthetic generative adversarial network-based multispectral satellite images with improved sharpness\",\"authors\":\"Lydia Abady, Mauro Barni, Andrea Garzelli, Benedetta Tondi\",\"doi\":\"10.1117/1.jrs.18.014510\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The generation of synthetic multispectral satellite images has not yet reached the quality level achievable in other domains, such as the generation and manipulation of face images. Part of the difficulty stems from the need to generate consistent data across the entire electromagnetic spectrum covered by such images at radiometric resolutions higher than those typically used in multimedia applications. The different spatial resolution of image bands corresponding to different wavelengths poses additional problems, whose main effect is a lack of spatial details in the synthetic images with respect to the original ones. We propose two generative adversarial networks-based architectures explicitly thought to generate synthetic satellite imagery by applying style transfer to 13-band Sentinel-2 level1-C images. To avoid losing the finer spatial details and improve the sharpness of the generated images, we introduce a pansharpening-like approach, whereby the spatial structures of the input image are transferred to the style-transferred images without introducing visible artifacts. The results we got by applying the proposed architectures to transform barren images into vegetation images and vice versa and to transform summer (res. winter) images into winter (res. summer) images, which confirm the validity of the proposed solution.\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.014510\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014510","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

合成多光谱卫星图像的生成尚未达到其他领域的质量水平,例如人脸图像的生成和处理。困难的部分原因是需要在这些图像覆盖的整个电磁波谱范围内生成一致的数据,其辐射分辨率要高于多媒体应用中通常使用的分辨率。与不同波长相对应的图像波段的空间分辨率不同会带来额外的问题,其主要影响是合成图像与原始图像相比缺乏空间细节。我们提出了两种基于生成式对抗网络的架构,通过对 13 波段的哨兵-2 level1-C 图像进行样式转移,生成合成卫星图像。为了避免丢失更精细的空间细节并提高生成图像的清晰度,我们引入了一种类似于平锐化的方法,将输入图像的空间结构转移到样式转移图像中,而不引入可见的伪影。我们应用所提出的架构将贫瘠图像转换为植被图像,反之亦然,并将夏季(res. winter)图像转换为冬季(res. summer)图像,这些结果证实了所提出解决方案的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generation of synthetic generative adversarial network-based multispectral satellite images with improved sharpness
The generation of synthetic multispectral satellite images has not yet reached the quality level achievable in other domains, such as the generation and manipulation of face images. Part of the difficulty stems from the need to generate consistent data across the entire electromagnetic spectrum covered by such images at radiometric resolutions higher than those typically used in multimedia applications. The different spatial resolution of image bands corresponding to different wavelengths poses additional problems, whose main effect is a lack of spatial details in the synthetic images with respect to the original ones. We propose two generative adversarial networks-based architectures explicitly thought to generate synthetic satellite imagery by applying style transfer to 13-band Sentinel-2 level1-C images. To avoid losing the finer spatial details and improve the sharpness of the generated images, we introduce a pansharpening-like approach, whereby the spatial structures of the input image are transferred to the style-transferred images without introducing visible artifacts. The results we got by applying the proposed architectures to transform barren images into vegetation images and vice versa and to transform summer (res. winter) images into winter (res. summer) images, which confirm the validity of the proposed solution.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1