针对多维包的 K-means 支持强化学习框架

IF 16.4 1区 化学 Q1 CHEMISTRY, MULTIDISCIPLINARY Accounts of Chemical Research Pub Date : 2024-02-15 DOI:10.1007/s10898-024-01364-6
Sabah Bushaj, İ. Esra Büyüktahtakın
{"title":"针对多维包的 K-means 支持强化学习框架","authors":"Sabah Bushaj, İ. Esra Büyüktahtakın","doi":"10.1007/s10898-024-01364-6","DOIUrl":null,"url":null,"abstract":"<p>In this paper, we address the difficulty of solving large-scale multi-dimensional knapsack instances (MKP), presenting a novel deep reinforcement learning (DRL) framework. In this DRL framework, we train different agents compatible with a discrete action space for sequential decision-making while still satisfying any resource constraint of the MKP. This novel framework incorporates the decision variable values in the 2D DRL where the agent is responsible for assigning a value of 1 or 0 to each of the variables. To the best of our knowledge, this is the first DRL model of its kind in which a 2D environment is formulated, and an element of the DRL solution matrix represents an item of the MKP. Our framework is configured to solve MKP instances of different dimensions and distributions. We propose a K-means approach to obtain an initial feasible solution that is used to train the DRL agent. We train four different agents in our framework and present the results comparing each of them with the CPLEX commercial solver. The results show that our agents can learn and generalize over instances with different sizes and distributions. Our DRL framework shows that it can solve medium-sized instances at least 45 times faster in CPU solution time and at least 10 times faster for large instances, with a maximum solution gap of 0.28% compared to the performance of CPLEX. Furthermore, at least 95% of the items are predicted in line with the CPLEX solution. Computations with DRL also provide a better optimality gap with respect to state-of-the-art approaches.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack\",\"authors\":\"Sabah Bushaj, İ. Esra Büyüktahtakın\",\"doi\":\"10.1007/s10898-024-01364-6\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, we address the difficulty of solving large-scale multi-dimensional knapsack instances (MKP), presenting a novel deep reinforcement learning (DRL) framework. In this DRL framework, we train different agents compatible with a discrete action space for sequential decision-making while still satisfying any resource constraint of the MKP. This novel framework incorporates the decision variable values in the 2D DRL where the agent is responsible for assigning a value of 1 or 0 to each of the variables. To the best of our knowledge, this is the first DRL model of its kind in which a 2D environment is formulated, and an element of the DRL solution matrix represents an item of the MKP. Our framework is configured to solve MKP instances of different dimensions and distributions. We propose a K-means approach to obtain an initial feasible solution that is used to train the DRL agent. We train four different agents in our framework and present the results comparing each of them with the CPLEX commercial solver. The results show that our agents can learn and generalize over instances with different sizes and distributions. Our DRL framework shows that it can solve medium-sized instances at least 45 times faster in CPU solution time and at least 10 times faster for large instances, with a maximum solution gap of 0.28% compared to the performance of CPLEX. Furthermore, at least 95% of the items are predicted in line with the CPLEX solution. Computations with DRL also provide a better optimality gap with respect to state-of-the-art approaches.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1007/s10898-024-01364-6\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1007/s10898-024-01364-6","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

在本文中,我们提出了一种新颖的深度强化学习(DRL)框架,以解决大规模多维knapsack实例(MKP)的求解难题。在这个 DRL 框架中,我们训练与离散行动空间兼容的不同代理,以便在满足 MKP 的任何资源限制的同时进行顺序决策。这种新颖的框架将决策变量值纳入了二维 DRL,由代理负责为每个变量赋值 1 或 0。据我们所知,这是首个二维环境下的 DRL 模型,DRL 解矩阵的一个元素代表 MKP 的一个项目。我们的框架可用于解决不同维度和分布的 MKP 实例。我们提出了一种 K-means 方法来获取初始可行解,并将其用于训练 DRL 代理。我们在框架中训练了四个不同的代理,并将每个代理的结果与 CPLEX 商业求解器进行了比较。结果表明,我们的代理可以对不同规模和分布的实例进行学习和泛化。我们的 DRL 框架显示,与 CPLEX 的性能相比,它解决中等规模实例的 CPU 解算时间至少快 45 倍,解决大型实例的 CPU 解算时间至少快 10 倍,最大解算差距为 0.28%。此外,至少 95% 的项目预测结果与 CPLEX 解决方案一致。与最先进的方法相比,使用 DRL 计算还能提供更好的优化差距。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A K-means Supported Reinforcement Learning Framework to Multi-dimensional Knapsack

In this paper, we address the difficulty of solving large-scale multi-dimensional knapsack instances (MKP), presenting a novel deep reinforcement learning (DRL) framework. In this DRL framework, we train different agents compatible with a discrete action space for sequential decision-making while still satisfying any resource constraint of the MKP. This novel framework incorporates the decision variable values in the 2D DRL where the agent is responsible for assigning a value of 1 or 0 to each of the variables. To the best of our knowledge, this is the first DRL model of its kind in which a 2D environment is formulated, and an element of the DRL solution matrix represents an item of the MKP. Our framework is configured to solve MKP instances of different dimensions and distributions. We propose a K-means approach to obtain an initial feasible solution that is used to train the DRL agent. We train four different agents in our framework and present the results comparing each of them with the CPLEX commercial solver. The results show that our agents can learn and generalize over instances with different sizes and distributions. Our DRL framework shows that it can solve medium-sized instances at least 45 times faster in CPU solution time and at least 10 times faster for large instances, with a maximum solution gap of 0.28% compared to the performance of CPLEX. Furthermore, at least 95% of the items are predicted in line with the CPLEX solution. Computations with DRL also provide a better optimality gap with respect to state-of-the-art approaches.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Accounts of Chemical Research
Accounts of Chemical Research 化学-化学综合
CiteScore
31.40
自引率
1.10%
发文量
312
审稿时长
2 months
期刊介绍: Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance. Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.
期刊最新文献
Management of Cholesteatoma: Hearing Rehabilitation. Congenital Cholesteatoma. Evaluation of Cholesteatoma. Management of Cholesteatoma: Extension Beyond Middle Ear/Mastoid. Recidivism and Recurrence.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1