Gang Chen, Yang Han, Yuehua Li, Jiatao Shen, Jiajun Tu, Zhicheng Yu, Junrui Zhang, Hao Cheng, Lvyuan Zhu, Fei Dong
{"title":"火星多地形环境下六足行走机器人的自主步态切换方法与实验","authors":"Gang Chen, Yang Han, Yuehua Li, Jiatao Shen, Jiajun Tu, Zhicheng Yu, Junrui Zhang, Hao Cheng, Lvyuan Zhu, Fei Dong","doi":"10.1007/s11370-023-00508-z","DOIUrl":null,"url":null,"abstract":"<p>Mars exploration significantly advances our understanding of planetary evolution, the origin of life, and possibilities for Earth’s future. It also holds potential for discovering new mineral resources, energy sources, and potential settlement sites. Navigating Mars’ complex environment and unknown terrain is a formidable challenge, particularly for autonomous exploration. The hexapod walking robot, inspired by ant morphology, emerges as a robust solution. This design offers diverse gait options, mechanical redundancy, high fault tolerance, and stability, rendering it well suited for Martian terrain. This paper details the development of an ant-inspired hexapod robot, emphasizing its terrain adaptability on Mars. A novel terrain detection method utilizing a convolutional neural network enables efficient identification of varied terrain types through semantic segmentation of visual images. Additionally, we introduce a comprehensive motion performance evaluation index for the hexapod robot, including speed and stability. These metrics facilitate effective performance assessment in different environments. A key innovation is the proposed gait switching method for the hexapod robot. This approach allows seamless transition between gaits while in motion, enhancing the robot's ability to traverse challenging terrains. The experimental results validate the effectiveness of this method. Utilizing gait switching leads to a significant improvement in robot performance and stability—58.5% and 41.4% better than using tripod and amble gaits, respectively. Compared to single tripod, amble, and wave gaits, the comprehensive motion performance indices of the robot improved by 36.3%, 30.6%, and 41.1%, respectively. This study can provide new ideas and methods for the motion evaluation and adaptive gait switching of multilegged robots in complex terrains. It significantly enhances the mobility and adaptability of such robots in challenging environments, contributing valuable knowledge to the field of planetary exploration robotics.</p>","PeriodicalId":48813,"journal":{"name":"Intelligent Service Robotics","volume":"64 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Autonomous gait switching method and experiments of a hexapod walking robot for Mars environment with multiple terrains\",\"authors\":\"Gang Chen, Yang Han, Yuehua Li, Jiatao Shen, Jiajun Tu, Zhicheng Yu, Junrui Zhang, Hao Cheng, Lvyuan Zhu, Fei Dong\",\"doi\":\"10.1007/s11370-023-00508-z\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Mars exploration significantly advances our understanding of planetary evolution, the origin of life, and possibilities for Earth’s future. It also holds potential for discovering new mineral resources, energy sources, and potential settlement sites. Navigating Mars’ complex environment and unknown terrain is a formidable challenge, particularly for autonomous exploration. The hexapod walking robot, inspired by ant morphology, emerges as a robust solution. This design offers diverse gait options, mechanical redundancy, high fault tolerance, and stability, rendering it well suited for Martian terrain. This paper details the development of an ant-inspired hexapod robot, emphasizing its terrain adaptability on Mars. A novel terrain detection method utilizing a convolutional neural network enables efficient identification of varied terrain types through semantic segmentation of visual images. Additionally, we introduce a comprehensive motion performance evaluation index for the hexapod robot, including speed and stability. These metrics facilitate effective performance assessment in different environments. A key innovation is the proposed gait switching method for the hexapod robot. This approach allows seamless transition between gaits while in motion, enhancing the robot's ability to traverse challenging terrains. The experimental results validate the effectiveness of this method. Utilizing gait switching leads to a significant improvement in robot performance and stability—58.5% and 41.4% better than using tripod and amble gaits, respectively. Compared to single tripod, amble, and wave gaits, the comprehensive motion performance indices of the robot improved by 36.3%, 30.6%, and 41.1%, respectively. This study can provide new ideas and methods for the motion evaluation and adaptive gait switching of multilegged robots in complex terrains. It significantly enhances the mobility and adaptability of such robots in challenging environments, contributing valuable knowledge to the field of planetary exploration robotics.</p>\",\"PeriodicalId\":48813,\"journal\":{\"name\":\"Intelligent Service Robotics\",\"volume\":\"64 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Intelligent Service Robotics\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s11370-023-00508-z\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ROBOTICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Intelligent Service Robotics","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s11370-023-00508-z","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ROBOTICS","Score":null,"Total":0}
Autonomous gait switching method and experiments of a hexapod walking robot for Mars environment with multiple terrains
Mars exploration significantly advances our understanding of planetary evolution, the origin of life, and possibilities for Earth’s future. It also holds potential for discovering new mineral resources, energy sources, and potential settlement sites. Navigating Mars’ complex environment and unknown terrain is a formidable challenge, particularly for autonomous exploration. The hexapod walking robot, inspired by ant morphology, emerges as a robust solution. This design offers diverse gait options, mechanical redundancy, high fault tolerance, and stability, rendering it well suited for Martian terrain. This paper details the development of an ant-inspired hexapod robot, emphasizing its terrain adaptability on Mars. A novel terrain detection method utilizing a convolutional neural network enables efficient identification of varied terrain types through semantic segmentation of visual images. Additionally, we introduce a comprehensive motion performance evaluation index for the hexapod robot, including speed and stability. These metrics facilitate effective performance assessment in different environments. A key innovation is the proposed gait switching method for the hexapod robot. This approach allows seamless transition between gaits while in motion, enhancing the robot's ability to traverse challenging terrains. The experimental results validate the effectiveness of this method. Utilizing gait switching leads to a significant improvement in robot performance and stability—58.5% and 41.4% better than using tripod and amble gaits, respectively. Compared to single tripod, amble, and wave gaits, the comprehensive motion performance indices of the robot improved by 36.3%, 30.6%, and 41.1%, respectively. This study can provide new ideas and methods for the motion evaluation and adaptive gait switching of multilegged robots in complex terrains. It significantly enhances the mobility and adaptability of such robots in challenging environments, contributing valuable knowledge to the field of planetary exploration robotics.
期刊介绍:
The journal directs special attention to the emerging significance of integrating robotics with information technology and cognitive science (such as ubiquitous and adaptive computing,information integration in a distributed environment, and cognitive modelling for human-robot interaction), which spurs innovation toward a new multi-dimensional robotic service to humans. The journal intends to capture and archive this emerging yet significant advancement in the field of intelligent service robotics. The journal will publish original papers of innovative ideas and concepts, new discoveries and improvements, as well as novel applications and business models which are related to the field of intelligent service robotics described above and are proven to be of high quality. The areas that the Journal will cover include, but are not limited to: Intelligent robots serving humans in daily life or in a hazardous environment, such as home or personal service robots, entertainment robots, education robots, medical robots, healthcare and rehabilitation robots, and rescue robots (Service Robotics); Intelligent robotic functions in the form of embedded systems for applications to, for example, intelligent space, intelligent vehicles and transportation systems, intelligent manufacturing systems, and intelligent medical facilities (Embedded Robotics); The integration of robotics with network technologies, generating such services and solutions as distributed robots, distance robotic education-aides, and virtual laboratories or museums (Networked Robotics).