José Victor Orlandi Simões, Rogerio Galante Negri, Felipe Nascimento Souza, Tatiana Sussel Gonçalves Mendes, Adriano Bressane
{"title":"利用多时合成孔径雷达数据进行无监督烧毁区域探测","authors":"José Victor Orlandi Simões, Rogerio Galante Negri, Felipe Nascimento Souza, Tatiana Sussel Gonçalves Mendes, Adriano Bressane","doi":"10.1117/1.jrs.18.014513","DOIUrl":null,"url":null,"abstract":"Climate change is a critical concern that has been greatly affected by human activities, resulting in a rise in greenhouse gas emissions. Its effects have far-reaching impacts on both living and non-living components of ecosystems, leading to alarming outcomes such as a surge in the frequency and severity of fires. This paper presents a data-driven framework that unifies time series of remote sensing images, statistical modeling, and unsupervised classification for mapping fire-damaged areas. To validate the proposed methodology, multiple remote sensing images acquired by the Sentinel-1 satellite between August and October 2021 were collected and analyzed in two case studies comprising Brazilian biomes affected by burns. Our results demonstrate that the proposed approach outperforms another method evaluated in terms of precision metrics and visual adherence. Our methodology achieves the highest overall accuracy of 58.15% and the highest F1 score of 0.72, both of which are higher than the other method. These findings suggest that our approach is more effective in detecting burned areas and may have practical applications in other environmental issues such as landslides, flooding, and deforestation.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"14 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Unsupervised burned areas detection using multitemporal synthetic aperture radar data\",\"authors\":\"José Victor Orlandi Simões, Rogerio Galante Negri, Felipe Nascimento Souza, Tatiana Sussel Gonçalves Mendes, Adriano Bressane\",\"doi\":\"10.1117/1.jrs.18.014513\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Climate change is a critical concern that has been greatly affected by human activities, resulting in a rise in greenhouse gas emissions. Its effects have far-reaching impacts on both living and non-living components of ecosystems, leading to alarming outcomes such as a surge in the frequency and severity of fires. This paper presents a data-driven framework that unifies time series of remote sensing images, statistical modeling, and unsupervised classification for mapping fire-damaged areas. To validate the proposed methodology, multiple remote sensing images acquired by the Sentinel-1 satellite between August and October 2021 were collected and analyzed in two case studies comprising Brazilian biomes affected by burns. Our results demonstrate that the proposed approach outperforms another method evaluated in terms of precision metrics and visual adherence. Our methodology achieves the highest overall accuracy of 58.15% and the highest F1 score of 0.72, both of which are higher than the other method. These findings suggest that our approach is more effective in detecting burned areas and may have practical applications in other environmental issues such as landslides, flooding, and deforestation.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.014513\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014513","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Unsupervised burned areas detection using multitemporal synthetic aperture radar data
Climate change is a critical concern that has been greatly affected by human activities, resulting in a rise in greenhouse gas emissions. Its effects have far-reaching impacts on both living and non-living components of ecosystems, leading to alarming outcomes such as a surge in the frequency and severity of fires. This paper presents a data-driven framework that unifies time series of remote sensing images, statistical modeling, and unsupervised classification for mapping fire-damaged areas. To validate the proposed methodology, multiple remote sensing images acquired by the Sentinel-1 satellite between August and October 2021 were collected and analyzed in two case studies comprising Brazilian biomes affected by burns. Our results demonstrate that the proposed approach outperforms another method evaluated in terms of precision metrics and visual adherence. Our methodology achieves the highest overall accuracy of 58.15% and the highest F1 score of 0.72, both of which are higher than the other method. These findings suggest that our approach is more effective in detecting burned areas and may have practical applications in other environmental issues such as landslides, flooding, and deforestation.
期刊介绍:
The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.