{"title":"宁加洛日食:Himawari-9 卫星测量得出的月影速度和地表温度效应","authors":"Fred Prata","doi":"10.1117/1.jrs.18.014511","DOIUrl":null,"url":null,"abstract":"A total solar eclipse occurred on April 20, 2023, with the umbral shadow touching the Australian continent over the Ningaloo coastal region, near the town of Exmouth, Western Australia. Eclipse totality lasted ∼1 min, reaching totality at ∼03:29 UTC and happened under cloudless skies. Here, we show that the speed of the Moon’s shadow over the land surface can be estimated from 10 min sampling in both the infrared and visible bands of the Himawari-9 geostationary satellite sensor. The cooling of the land surface due to the passage of the Moon’s shadow over the land is investigated, and temperature drops of 7 K to 15 K are found with cooling rates of 2±1.5 mK s−1. By tracking the time of maximum cooling, the speed of the Moon’s shadow was estimated from thermal data to be 2788±21 km h−1 and from the time of minimum reflectance in the visible data to be 2598±181 km h−1, with a notable time dependence. The methodology and analyses are new and the results compare favorably with NASA’s eclipse data computed using Besselian elements.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"14 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Ningaloo eclipse: moon shadow speed and land surface temperature effects from Himawari-9 satellite measurements\",\"authors\":\"Fred Prata\",\"doi\":\"10.1117/1.jrs.18.014511\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A total solar eclipse occurred on April 20, 2023, with the umbral shadow touching the Australian continent over the Ningaloo coastal region, near the town of Exmouth, Western Australia. Eclipse totality lasted ∼1 min, reaching totality at ∼03:29 UTC and happened under cloudless skies. Here, we show that the speed of the Moon’s shadow over the land surface can be estimated from 10 min sampling in both the infrared and visible bands of the Himawari-9 geostationary satellite sensor. The cooling of the land surface due to the passage of the Moon’s shadow over the land is investigated, and temperature drops of 7 K to 15 K are found with cooling rates of 2±1.5 mK s−1. By tracking the time of maximum cooling, the speed of the Moon’s shadow was estimated from thermal data to be 2788±21 km h−1 and from the time of minimum reflectance in the visible data to be 2598±181 km h−1, with a notable time dependence. The methodology and analyses are new and the results compare favorably with NASA’s eclipse data computed using Besselian elements.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":\"14 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.014511\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014511","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
2023 年 4 月 20 日发生了日全食,本影在西澳大利亚埃克斯茅斯镇附近的宁格鲁沿海地区上空触及澳大利亚大陆。日全食持续了 1 分钟,在世界协调时 03:29 分达到全食,发生在万里无云的天空下。在此,我们展示了通过对向日葵9号地球静止卫星传感器的红外波段和可见光波段进行10分钟取样,可以估算出月影掠过陆地表面的速度。研究了月影掠过陆地导致的陆地表面降温,发现温度下降了 7 K 至 15 K,降温速率为 2±1.5 mK s-1。通过跟踪最大降温时间,从热数据估算出月影的速度为 2788±21 km h-1,从可见光数据中的最小反射率时间估算出月影的速度为 2598±181 km h-1,两者具有显著的时间依赖性。该方法和分析都是全新的,其结果与美国国家航空航天局使用贝塞尔元素计算的月食数据相比效果更佳。
Ningaloo eclipse: moon shadow speed and land surface temperature effects from Himawari-9 satellite measurements
A total solar eclipse occurred on April 20, 2023, with the umbral shadow touching the Australian continent over the Ningaloo coastal region, near the town of Exmouth, Western Australia. Eclipse totality lasted ∼1 min, reaching totality at ∼03:29 UTC and happened under cloudless skies. Here, we show that the speed of the Moon’s shadow over the land surface can be estimated from 10 min sampling in both the infrared and visible bands of the Himawari-9 geostationary satellite sensor. The cooling of the land surface due to the passage of the Moon’s shadow over the land is investigated, and temperature drops of 7 K to 15 K are found with cooling rates of 2±1.5 mK s−1. By tracking the time of maximum cooling, the speed of the Moon’s shadow was estimated from thermal data to be 2788±21 km h−1 and from the time of minimum reflectance in the visible data to be 2598±181 km h−1, with a notable time dependence. The methodology and analyses are new and the results compare favorably with NASA’s eclipse data computed using Besselian elements.
期刊介绍:
The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.