基于深度学习方法从多维遥感数据中提取最佳特征,用于果园识别

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-02-01 DOI:10.1117/1.jrs.18.014514
Junjie Luo, Jiao Guo, Zhe Zhu, Yunlong Du, Yongkai Ye
{"title":"基于深度学习方法从多维遥感数据中提取最佳特征,用于果园识别","authors":"Junjie Luo, Jiao Guo, Zhe Zhu, Yunlong Du, Yongkai Ye","doi":"10.1117/1.jrs.18.014514","DOIUrl":null,"url":null,"abstract":"Accurate orchard spatial distribution information can help government departments to formulate scientific and reasonable agricultural economic policies. However, it is prominent to apply remote sensing images to obtain orchard planting structure information. The traditional multidimensional remote sensing data processing, dimension reduction and classification, which are two separate steps, cannot guarantee that final classification results can be benefited from dimension reduction process. Consequently, to make connection between dimension reduction and classification, this work proposes two neural networks that fuse stack autoencoder and convolutional neural network (CNN) at one-dimension and three-dimension, namely one-dimension and three-dimension fusion stacked autoencoder (FSA) and CNN networks (1D-FSA-CNN and 3D-FSA-CNN). In both networks, the front-end uses a stacked autoencoder (SAE) for dimension reduction, and the back-end uses a CNN with a Softmax classifier for classification. In the experiments, based on Google Earth Engine platform, two groups of orchard datasets are constructed using multi-source remote sensing data (i.e., GaoFen-1, Sentinel-2 and GaoFen-1, and GaoFen-3). Meanwhile, DenseNet201, 3D-CNN, 1D-CNN, and SAE are used for conduct two comparative experiments. The experimental results show that the proposed fusion neural networks achieve the state-of-the-art performance, both accuracies of 3D-FSA-CNN and 1D-FSA-CNN are higher than 95%.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":"26 1","pages":""},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimal feature extraction from multidimensional remote sensing data for orchard identification based on deep learning methods\",\"authors\":\"Junjie Luo, Jiao Guo, Zhe Zhu, Yunlong Du, Yongkai Ye\",\"doi\":\"10.1117/1.jrs.18.014514\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Accurate orchard spatial distribution information can help government departments to formulate scientific and reasonable agricultural economic policies. However, it is prominent to apply remote sensing images to obtain orchard planting structure information. The traditional multidimensional remote sensing data processing, dimension reduction and classification, which are two separate steps, cannot guarantee that final classification results can be benefited from dimension reduction process. Consequently, to make connection between dimension reduction and classification, this work proposes two neural networks that fuse stack autoencoder and convolutional neural network (CNN) at one-dimension and three-dimension, namely one-dimension and three-dimension fusion stacked autoencoder (FSA) and CNN networks (1D-FSA-CNN and 3D-FSA-CNN). In both networks, the front-end uses a stacked autoencoder (SAE) for dimension reduction, and the back-end uses a CNN with a Softmax classifier for classification. In the experiments, based on Google Earth Engine platform, two groups of orchard datasets are constructed using multi-source remote sensing data (i.e., GaoFen-1, Sentinel-2 and GaoFen-1, and GaoFen-3). Meanwhile, DenseNet201, 3D-CNN, 1D-CNN, and SAE are used for conduct two comparative experiments. The experimental results show that the proposed fusion neural networks achieve the state-of-the-art performance, both accuracies of 3D-FSA-CNN and 1D-FSA-CNN are higher than 95%.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":\"26 1\",\"pages\":\"\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.014514\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014514","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

准确的果园空间分布信息有助于政府部门制定科学合理的农业经济政策。然而,应用遥感影像获取果园种植结构信息的问题比较突出。传统的多维遥感数据处理,降维和分类是两个独立的步骤,无法保证最终的分类结果能够从降维过程中获益。因此,为了将降维与分类联系起来,本研究提出了两种在一维和三维上融合堆栈自动编码器和卷积神经网络(CNN)的神经网络,即一维和三维融合堆栈自动编码器(FSA)和 CNN 网络(1D-FSA-CNN 和 3D-FSA-CNN )。在这两种网络中,前端使用堆叠自动编码器(SAE)进行降维,后端使用带有 Softmax 分类器的 CNN 进行分类。在实验中,基于谷歌地球引擎平台,利用多源遥感数据构建了两组果园数据集(即高分一号、哨兵二号和高分一号、高分三号)。同时,利用 DenseNet201、3D-CNN、1D-CNN 和 SAE 进行了两次对比实验。实验结果表明,所提出的融合神经网络达到了最先进的性能,3D-FSA-CNN 和 1D-FSA-CNN 的准确率均高于 95%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Optimal feature extraction from multidimensional remote sensing data for orchard identification based on deep learning methods
Accurate orchard spatial distribution information can help government departments to formulate scientific and reasonable agricultural economic policies. However, it is prominent to apply remote sensing images to obtain orchard planting structure information. The traditional multidimensional remote sensing data processing, dimension reduction and classification, which are two separate steps, cannot guarantee that final classification results can be benefited from dimension reduction process. Consequently, to make connection between dimension reduction and classification, this work proposes two neural networks that fuse stack autoencoder and convolutional neural network (CNN) at one-dimension and three-dimension, namely one-dimension and three-dimension fusion stacked autoencoder (FSA) and CNN networks (1D-FSA-CNN and 3D-FSA-CNN). In both networks, the front-end uses a stacked autoencoder (SAE) for dimension reduction, and the back-end uses a CNN with a Softmax classifier for classification. In the experiments, based on Google Earth Engine platform, two groups of orchard datasets are constructed using multi-source remote sensing data (i.e., GaoFen-1, Sentinel-2 and GaoFen-1, and GaoFen-3). Meanwhile, DenseNet201, 3D-CNN, 1D-CNN, and SAE are used for conduct two comparative experiments. The experimental results show that the proposed fusion neural networks achieve the state-of-the-art performance, both accuracies of 3D-FSA-CNN and 1D-FSA-CNN are higher than 95%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions Cascaded CNN and global–local attention transformer network-based semantic segmentation for high-resolution remote sensing image Coastal chlorophyll-a concentration estimation by fusion of Sentinel-2 multispectral instrument and in-situ hyperspectral data Spectral index for estimating leaf water content across diverse plant species using multiple viewing angles Optimal band selection using explainable artificial intelligence for machine learning-based hyperspectral image classification
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1