全回转钢护筒钻孔桩对邻近隧道的影响

IF 1.7 4区 地球科学 Q3 GEOSCIENCES, MULTIDISCIPLINARY Open Geosciences Pub Date : 2024-02-16 DOI:10.1515/geo-2022-0600
Jingran Zhang, Dajiang Geng, Xiaoxia Zhao, Zhicheng Bai, Mingjian Long
{"title":"全回转钢护筒钻孔桩对邻近隧道的影响","authors":"Jingran Zhang, Dajiang Geng, Xiaoxia Zhao, Zhicheng Bai, Mingjian Long","doi":"10.1515/geo-2022-0600","DOIUrl":null,"url":null,"abstract":"Based on the theoretical model of a soil plug column, the stress analysis of the soil plug column during the spinning process of steel casing is carried out, and the critical depth of the soil column is determined using the stress and torsional shear ratio of the soil column. The effect of factors such as casing wall thickness, surface load, and steel casing spinning speed on the critical depth of soil columns has been explored, and more reasonable construction process parameters have been obtained quantitatively. Combined with the construction of small net distance test piles at a distance of 2.5 m from the tunnel, the impact of the construction process on the existing shield tunnel has been explored. The results indicate that during the construction process, when the wall thickness of the steel casing does not exceed 0.012 m, the surface load does not exceed 15 kPa, the spinning speed of the steel casing is maintained at 5/4/2/4 m/h or 5/3/2/3 m/h (corresponding to soil depths of 2.5/9.5/6/14 m), and the soil height of the soil column is controlled within 11 m, it is not easy to generate soil plug inside the steel casing, and the soil column has strong torsional shear resistance. According to the measured data of adjacent tunnels, it has been found that the construction method of fully rotating steel casing bored pile can effectively reduce the impact on adjacent shield tunnels, and has a good microdisturbance effect, which can control tunnel deformation not exceeding 1 mm and maintain within the warning value range.","PeriodicalId":48712,"journal":{"name":"Open Geosciences","volume":"18 1","pages":""},"PeriodicalIF":1.7000,"publicationDate":"2024-02-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Impact of fully rotating steel casing bored pile on adjacent tunnels\",\"authors\":\"Jingran Zhang, Dajiang Geng, Xiaoxia Zhao, Zhicheng Bai, Mingjian Long\",\"doi\":\"10.1515/geo-2022-0600\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Based on the theoretical model of a soil plug column, the stress analysis of the soil plug column during the spinning process of steel casing is carried out, and the critical depth of the soil column is determined using the stress and torsional shear ratio of the soil column. The effect of factors such as casing wall thickness, surface load, and steel casing spinning speed on the critical depth of soil columns has been explored, and more reasonable construction process parameters have been obtained quantitatively. Combined with the construction of small net distance test piles at a distance of 2.5 m from the tunnel, the impact of the construction process on the existing shield tunnel has been explored. The results indicate that during the construction process, when the wall thickness of the steel casing does not exceed 0.012 m, the surface load does not exceed 15 kPa, the spinning speed of the steel casing is maintained at 5/4/2/4 m/h or 5/3/2/3 m/h (corresponding to soil depths of 2.5/9.5/6/14 m), and the soil height of the soil column is controlled within 11 m, it is not easy to generate soil plug inside the steel casing, and the soil column has strong torsional shear resistance. According to the measured data of adjacent tunnels, it has been found that the construction method of fully rotating steel casing bored pile can effectively reduce the impact on adjacent shield tunnels, and has a good microdisturbance effect, which can control tunnel deformation not exceeding 1 mm and maintain within the warning value range.\",\"PeriodicalId\":48712,\"journal\":{\"name\":\"Open Geosciences\",\"volume\":\"18 1\",\"pages\":\"\"},\"PeriodicalIF\":1.7000,\"publicationDate\":\"2024-02-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Geosciences\",\"FirstCategoryId\":\"89\",\"ListUrlMain\":\"https://doi.org/10.1515/geo-2022-0600\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"GEOSCIENCES, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Geosciences","FirstCategoryId":"89","ListUrlMain":"https://doi.org/10.1515/geo-2022-0600","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"GEOSCIENCES, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0

摘要

基于土塞柱理论模型,对钢套管旋压过程中的土塞柱进行了应力分析,利用土塞柱的应力和扭剪比确定了土塞柱的临界深度。探讨了套管壁厚、表面荷载、钢套管旋压速度等因素对土柱临界深度的影响,定量得出了较为合理的施工工艺参数。结合距离隧道 2.5 米的小净距试桩施工,探讨了施工过程对既有盾构隧道的影响。结果表明,在施工过程中,当钢护筒壁厚不超过 0.012 m,地表荷载不超过 15 kPa,钢护筒旋转速度保持在 5/4/2/4 m/h 或 5/3/2/3 m/h (对应土层深度为 2.5/9.5/6/14 m),土柱土层高度控制在 11 m 以内时,钢护筒内不易产生土塞,土柱抗扭剪能力强。根据相邻隧道的实测数据发现,全回转钢护筒钻孔灌注桩施工方法能有效减少对相邻盾构隧道的影响,微扰动效果好,能控制隧道变形不超过1毫米,并保持在警戒值范围内。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Impact of fully rotating steel casing bored pile on adjacent tunnels
Based on the theoretical model of a soil plug column, the stress analysis of the soil plug column during the spinning process of steel casing is carried out, and the critical depth of the soil column is determined using the stress and torsional shear ratio of the soil column. The effect of factors such as casing wall thickness, surface load, and steel casing spinning speed on the critical depth of soil columns has been explored, and more reasonable construction process parameters have been obtained quantitatively. Combined with the construction of small net distance test piles at a distance of 2.5 m from the tunnel, the impact of the construction process on the existing shield tunnel has been explored. The results indicate that during the construction process, when the wall thickness of the steel casing does not exceed 0.012 m, the surface load does not exceed 15 kPa, the spinning speed of the steel casing is maintained at 5/4/2/4 m/h or 5/3/2/3 m/h (corresponding to soil depths of 2.5/9.5/6/14 m), and the soil height of the soil column is controlled within 11 m, it is not easy to generate soil plug inside the steel casing, and the soil column has strong torsional shear resistance. According to the measured data of adjacent tunnels, it has been found that the construction method of fully rotating steel casing bored pile can effectively reduce the impact on adjacent shield tunnels, and has a good microdisturbance effect, which can control tunnel deformation not exceeding 1 mm and maintain within the warning value range.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Open Geosciences
Open Geosciences GEOSCIENCES, MULTIDISCIPLINARY-
CiteScore
3.10
自引率
10.00%
发文量
63
审稿时长
15 weeks
期刊介绍: Open Geosciences (formerly Central European Journal of Geosciences - CEJG) is an open access, peer-reviewed journal publishing original research results from all fields of Earth Sciences such as: Atmospheric Sciences, Geology, Geophysics, Geography, Oceanography and Hydrology, Glaciology, Speleology, Volcanology, Soil Science, Palaeoecology, Geotourism, Geoinformatics, Geostatistics.
期刊最新文献
Evaluation of alteration in the geothermal province west of Cappadocia, Türkiye: Mineralogical, petrographical, geochemical, and remote sensing data Numerical modeling of site response at large strains with simplified nonlinear models: Application to Lotung seismic array Distribution law of Chang 7 Member tight oil in the western Ordos Basin based on geological, logging and numerical simulation techniques GIS-based spatial modeling of landslide susceptibility using BWM-LSI: A case study – city of Smederevo (Serbia) Structural detachment influences the shale gas preservation in the Wufeng-Longmaxi Formation, Northern Guizhou Province
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1