Shuyan Wang, Guangjun Kuang, Baoli Shao, Xi Chen, Lei Xie, Yimei Ma
{"title":"利用 K2CO3 粒子在鼓泡流化床中吸附二氧化碳的数值模拟","authors":"Shuyan Wang, Guangjun Kuang, Baoli Shao, Xi Chen, Lei Xie, Yimei Ma","doi":"10.1002/apj.3041","DOIUrl":null,"url":null,"abstract":"<p>With the increase of greenhouse gas emissions, global warming has become an urgent problem, and the use of solid adsorbents to capture CO<sub>2</sub> gas in flue gas has attracted more and more attention. In this study, the process of CO<sub>2</sub> capture by K<sub>2</sub>CO<sub>3</sub> particles in the bubbling fluidized bed (BFB) is numerically simulated with Eulerian–Eulerian(E–E) two fluid model incorporating with the kinetic theory of granular flows (KTGF). The results are verified through a detailed comparison with experimental data from Ayobi et al. Furthermore, Regarding the fundamental factors influencing CO<sub>2</sub> adsorption rate is revealed, diminishing the inlet gas superficial velocity and augmenting the particle size of the solid adsorbent both contribute to improve adsorption performance. Specifically, the adsorption rate increases from 76.7% to 81.7% at the gas superficial velocity reducing from 1.10 to 0.71 m/s, while the adsorption rate from 77.6% to 79.7% with the particle size ranging from 400 to 600 μm. Additionally, the study delves into an exploration of fluid dynamic characteristics pertaining to gas particles within the bubbling fluidized bed while systematically considering varied inlet gas superficial velocities and particle sizes.</p>","PeriodicalId":1,"journal":{"name":"Accounts of Chemical Research","volume":null,"pages":null},"PeriodicalIF":16.4000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation on adsorption of CO2 using K2CO3 particles in the bubbling fluidized bed\",\"authors\":\"Shuyan Wang, Guangjun Kuang, Baoli Shao, Xi Chen, Lei Xie, Yimei Ma\",\"doi\":\"10.1002/apj.3041\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>With the increase of greenhouse gas emissions, global warming has become an urgent problem, and the use of solid adsorbents to capture CO<sub>2</sub> gas in flue gas has attracted more and more attention. In this study, the process of CO<sub>2</sub> capture by K<sub>2</sub>CO<sub>3</sub> particles in the bubbling fluidized bed (BFB) is numerically simulated with Eulerian–Eulerian(E–E) two fluid model incorporating with the kinetic theory of granular flows (KTGF). The results are verified through a detailed comparison with experimental data from Ayobi et al. Furthermore, Regarding the fundamental factors influencing CO<sub>2</sub> adsorption rate is revealed, diminishing the inlet gas superficial velocity and augmenting the particle size of the solid adsorbent both contribute to improve adsorption performance. Specifically, the adsorption rate increases from 76.7% to 81.7% at the gas superficial velocity reducing from 1.10 to 0.71 m/s, while the adsorption rate from 77.6% to 79.7% with the particle size ranging from 400 to 600 μm. Additionally, the study delves into an exploration of fluid dynamic characteristics pertaining to gas particles within the bubbling fluidized bed while systematically considering varied inlet gas superficial velocities and particle sizes.</p>\",\"PeriodicalId\":1,\"journal\":{\"name\":\"Accounts of Chemical Research\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":16.4000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Accounts of Chemical Research\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/apj.3041\",\"RegionNum\":1,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"CHEMISTRY, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Accounts of Chemical Research","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/apj.3041","RegionNum":1,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"CHEMISTRY, MULTIDISCIPLINARY","Score":null,"Total":0}
引用次数: 0
摘要
随着温室气体排放量的增加,全球变暖已成为一个亟待解决的问题,利用固体吸附剂捕集烟道气中的二氧化碳已引起越来越多的关注。本研究采用欧拉-欧拉(E-E)双流体模型并结合颗粒流动动力学理论(KTGF),对鼓泡流化床(BFB)中 K2CO3 颗粒捕集 CO2 的过程进行了数值模拟。此外,研究还揭示了影响二氧化碳吸附率的基本因素,即降低入口气体的表面速度和增大固体吸附剂的粒度都有助于提高吸附性能。具体来说,当气体表面速度从 1.10 m/s 降低到 0.71 m/s 时,吸附率从 76.7% 提高到 81.7%,而当颗粒大小从 400 μm 到 600 μm 时,吸附率从 77.6% 提高到 79.7%。此外,该研究还深入探讨了鼓泡流化床内气体颗粒的流体动力学特性,同时系统地考虑了不同的入口气体表面速度和颗粒大小。
Numerical simulation on adsorption of CO2 using K2CO3 particles in the bubbling fluidized bed
With the increase of greenhouse gas emissions, global warming has become an urgent problem, and the use of solid adsorbents to capture CO2 gas in flue gas has attracted more and more attention. In this study, the process of CO2 capture by K2CO3 particles in the bubbling fluidized bed (BFB) is numerically simulated with Eulerian–Eulerian(E–E) two fluid model incorporating with the kinetic theory of granular flows (KTGF). The results are verified through a detailed comparison with experimental data from Ayobi et al. Furthermore, Regarding the fundamental factors influencing CO2 adsorption rate is revealed, diminishing the inlet gas superficial velocity and augmenting the particle size of the solid adsorbent both contribute to improve adsorption performance. Specifically, the adsorption rate increases from 76.7% to 81.7% at the gas superficial velocity reducing from 1.10 to 0.71 m/s, while the adsorption rate from 77.6% to 79.7% with the particle size ranging from 400 to 600 μm. Additionally, the study delves into an exploration of fluid dynamic characteristics pertaining to gas particles within the bubbling fluidized bed while systematically considering varied inlet gas superficial velocities and particle sizes.
期刊介绍:
Accounts of Chemical Research presents short, concise and critical articles offering easy-to-read overviews of basic research and applications in all areas of chemistry and biochemistry. These short reviews focus on research from the author’s own laboratory and are designed to teach the reader about a research project. In addition, Accounts of Chemical Research publishes commentaries that give an informed opinion on a current research problem. Special Issues online are devoted to a single topic of unusual activity and significance.
Accounts of Chemical Research replaces the traditional article abstract with an article "Conspectus." These entries synopsize the research affording the reader a closer look at the content and significance of an article. Through this provision of a more detailed description of the article contents, the Conspectus enhances the article's discoverability by search engines and the exposure for the research.