{"title":"加热模式对 Zr 和 Zr-1% Nb 合金耐热性的影响","authors":"","doi":"10.1007/s11003-024-00754-1","DOIUrl":null,"url":null,"abstract":"<p>Differences in the oxidation kinetics of zirconium and Zr–1% Nb alloy during heating in air depending on the heating rate, temperature and exposure time are revealed. The increase in the heating rate from 2.5 to 6 and 7.5°C/min reduces the activation energy of the Zr oxidation process in the temperature range of 20–1000°C from 70.2 to 67 and 52.7 kJ/mol, respectively. For the Zr–1% Nb zirconium alloy, increase in the heating rate from 5 to 10 and 20°C/min causes an increase in the activation energy of the oxidation process from 65 to 70.1 and 78.5 kJ/mol, respectively. Such an increase in the heating rate (of zirconium from 2.5 to 7.5°C/min, and of the Zr–1% Nb alloy from 5 to 20°C/min) causes a decrease in the thickness of the ZrO<sub>2</sub> oxide film. During isothermal exposure for 5 h at 750°C, Zr–1% Nb alloy and Zr at a temperature of 800°C are oxidized according to the parabolic law. At 800°C Zr–1% Nb alloy oxidizes according to the combined law: first, parabolic, and then quasi-linear.</p>","PeriodicalId":18230,"journal":{"name":"Materials Science","volume":"37 1","pages":""},"PeriodicalIF":0.7000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Heating Modes on Heat-Resistance of Zr and Zr–1% Nb Alloy\",\"authors\":\"\",\"doi\":\"10.1007/s11003-024-00754-1\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Differences in the oxidation kinetics of zirconium and Zr–1% Nb alloy during heating in air depending on the heating rate, temperature and exposure time are revealed. The increase in the heating rate from 2.5 to 6 and 7.5°C/min reduces the activation energy of the Zr oxidation process in the temperature range of 20–1000°C from 70.2 to 67 and 52.7 kJ/mol, respectively. For the Zr–1% Nb zirconium alloy, increase in the heating rate from 5 to 10 and 20°C/min causes an increase in the activation energy of the oxidation process from 65 to 70.1 and 78.5 kJ/mol, respectively. Such an increase in the heating rate (of zirconium from 2.5 to 7.5°C/min, and of the Zr–1% Nb alloy from 5 to 20°C/min) causes a decrease in the thickness of the ZrO<sub>2</sub> oxide film. During isothermal exposure for 5 h at 750°C, Zr–1% Nb alloy and Zr at a temperature of 800°C are oxidized according to the parabolic law. At 800°C Zr–1% Nb alloy oxidizes according to the combined law: first, parabolic, and then quasi-linear.</p>\",\"PeriodicalId\":18230,\"journal\":{\"name\":\"Materials Science\",\"volume\":\"37 1\",\"pages\":\"\"},\"PeriodicalIF\":0.7000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Materials Science\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1007/s11003-024-00754-1\",\"RegionNum\":4,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Materials Science","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1007/s11003-024-00754-1","RegionNum":4,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Influence of Heating Modes on Heat-Resistance of Zr and Zr–1% Nb Alloy
Differences in the oxidation kinetics of zirconium and Zr–1% Nb alloy during heating in air depending on the heating rate, temperature and exposure time are revealed. The increase in the heating rate from 2.5 to 6 and 7.5°C/min reduces the activation energy of the Zr oxidation process in the temperature range of 20–1000°C from 70.2 to 67 and 52.7 kJ/mol, respectively. For the Zr–1% Nb zirconium alloy, increase in the heating rate from 5 to 10 and 20°C/min causes an increase in the activation energy of the oxidation process from 65 to 70.1 and 78.5 kJ/mol, respectively. Such an increase in the heating rate (of zirconium from 2.5 to 7.5°C/min, and of the Zr–1% Nb alloy from 5 to 20°C/min) causes a decrease in the thickness of the ZrO2 oxide film. During isothermal exposure for 5 h at 750°C, Zr–1% Nb alloy and Zr at a temperature of 800°C are oxidized according to the parabolic law. At 800°C Zr–1% Nb alloy oxidizes according to the combined law: first, parabolic, and then quasi-linear.
期刊介绍:
Materials Science reports on current research into such problems as cracking, fatigue and fracture, especially in active environments as well as corrosion and anticorrosion protection of structural metallic and polymer materials, and the development of new materials.