真实世界中深度伪造检测的评估框架

IF 2.4 4区 计算机科学 Eurasip Journal on Image and Video Processing Pub Date : 2024-02-13 DOI:10.1186/s13640-024-00621-8
Yuhang Lu, Touradj Ebrahimi
{"title":"真实世界中深度伪造检测的评估框架","authors":"Yuhang Lu, Touradj Ebrahimi","doi":"10.1186/s13640-024-00621-8","DOIUrl":null,"url":null,"abstract":"<p>Detecting digital face manipulation in images and video has attracted extensive attention due to the potential risk to public trust. To counteract the malicious usage of such techniques, deep learning-based deepfake detection methods have been employed and have exhibited remarkable performance. However, the performance of such detectors is often assessed on related benchmarks that hardly reflect real-world situations. For example, the impact of various image and video processing operations and typical workflow distortions on detection accuracy has not been systematically measured. In this paper, a more reliable assessment framework is proposed to evaluate the performance of learning-based deepfake detectors in more realistic settings. To the best of our acknowledgment, it is the first systematic assessment approach for deepfake detectors that not only reports the general performance under real-world conditions but also quantitatively measures their robustness toward different processing operations. To demonstrate the effectiveness and usage of the framework, extensive experiments and detailed analysis of four popular deepfake detection methods are further presented in this paper. In addition, a stochastic degradation-based data augmentation method driven by realistic processing operations is designed, which significantly improves the robustness of deepfake detectors.</p>","PeriodicalId":49322,"journal":{"name":"Eurasip Journal on Image and Video Processing","volume":"46 1","pages":""},"PeriodicalIF":2.4000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Assessment framework for deepfake detection in real-world situations\",\"authors\":\"Yuhang Lu, Touradj Ebrahimi\",\"doi\":\"10.1186/s13640-024-00621-8\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Detecting digital face manipulation in images and video has attracted extensive attention due to the potential risk to public trust. To counteract the malicious usage of such techniques, deep learning-based deepfake detection methods have been employed and have exhibited remarkable performance. However, the performance of such detectors is often assessed on related benchmarks that hardly reflect real-world situations. For example, the impact of various image and video processing operations and typical workflow distortions on detection accuracy has not been systematically measured. In this paper, a more reliable assessment framework is proposed to evaluate the performance of learning-based deepfake detectors in more realistic settings. To the best of our acknowledgment, it is the first systematic assessment approach for deepfake detectors that not only reports the general performance under real-world conditions but also quantitatively measures their robustness toward different processing operations. To demonstrate the effectiveness and usage of the framework, extensive experiments and detailed analysis of four popular deepfake detection methods are further presented in this paper. In addition, a stochastic degradation-based data augmentation method driven by realistic processing operations is designed, which significantly improves the robustness of deepfake detectors.</p>\",\"PeriodicalId\":49322,\"journal\":{\"name\":\"Eurasip Journal on Image and Video Processing\",\"volume\":\"46 1\",\"pages\":\"\"},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Eurasip Journal on Image and Video Processing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13640-024-00621-8\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Eurasip Journal on Image and Video Processing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13640-024-00621-8","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

由于对公众信任的潜在风险,检测图像和视频中的数字人脸操纵引起了广泛关注。为了抵制此类技术的恶意使用,人们采用了基于深度学习的深度伪造检测方法,并取得了显著的效果。然而,这类检测器的性能通常是在相关基准上评估的,很难反映真实世界的情况。例如,各种图像和视频处理操作以及典型的工作流程失真对检测精度的影响尚未得到系统测量。本文提出了一个更可靠的评估框架,以评估基于学习的深度防伪检测器在更真实环境中的性能。据我们所知,这是第一种系统性的深度伪造检测器评估方法,不仅能报告真实世界条件下的一般性能,还能定量测量它们对不同处理操作的鲁棒性。为了证明该框架的有效性和用途,本文进一步介绍了对四种流行的深度伪造检测方法的广泛实验和详细分析。此外,本文还设计了一种基于随机退化的数据增强方法,该方法由现实处理操作驱动,可显著提高深度伪造检测器的鲁棒性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Assessment framework for deepfake detection in real-world situations

Detecting digital face manipulation in images and video has attracted extensive attention due to the potential risk to public trust. To counteract the malicious usage of such techniques, deep learning-based deepfake detection methods have been employed and have exhibited remarkable performance. However, the performance of such detectors is often assessed on related benchmarks that hardly reflect real-world situations. For example, the impact of various image and video processing operations and typical workflow distortions on detection accuracy has not been systematically measured. In this paper, a more reliable assessment framework is proposed to evaluate the performance of learning-based deepfake detectors in more realistic settings. To the best of our acknowledgment, it is the first systematic assessment approach for deepfake detectors that not only reports the general performance under real-world conditions but also quantitatively measures their robustness toward different processing operations. To demonstrate the effectiveness and usage of the framework, extensive experiments and detailed analysis of four popular deepfake detection methods are further presented in this paper. In addition, a stochastic degradation-based data augmentation method driven by realistic processing operations is designed, which significantly improves the robustness of deepfake detectors.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Eurasip Journal on Image and Video Processing
Eurasip Journal on Image and Video Processing Engineering-Electrical and Electronic Engineering
CiteScore
7.10
自引率
0.00%
发文量
23
审稿时长
6.8 months
期刊介绍: EURASIP Journal on Image and Video Processing is intended for researchers from both academia and industry, who are active in the multidisciplinary field of image and video processing. The scope of the journal covers all theoretical and practical aspects of the domain, from basic research to development of application.
期刊最新文献
Advanced fine-tuning procedures to enhance DNN robustness in visual coding for machines A novel multiscale cGAN approach for enhanced salient object detection in single haze images Optimization of parameters for image denoising algorithm pertaining to generalized Caputo-Fabrizio fractional operator Utility-based performance evaluation of biometric sample quality measures Beyond the visible: thermal data for facial soft biometric estimation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1