Shiv Narayan Singh, Jigyasa Bisaria, Bhaskar Sinha, Maneesh Kumar Patasaraiya, P. P. Sreerag
{"title":"为监测和评估印度气候智能型农业制定基于加权指标的综合指数","authors":"Shiv Narayan Singh, Jigyasa Bisaria, Bhaskar Sinha, Maneesh Kumar Patasaraiya, P. P. Sreerag","doi":"10.1007/s11027-024-10109-5","DOIUrl":null,"url":null,"abstract":"<p>Climate change is a serious concern that threatens global food security in several ways and exerts pressure on the already stressed agriculture system. The future prediction of a decline in the yield of major food grains like rice, wheat, and maize due to adverse impacts of increased warming and other climatic variabilities paves the way to shift the existing agriculture practices to more resource-efficient agriculture. This has entailed the government promoting climate-smart agriculture with its triple objectives, i.e. adaptation, mitigation, and food security. The current study developed a composite weighted indicator-based index to compute climate smartness score (CSS) at the farm level in India and tested its effectiveness in measuring the climate resilience of the farmers in Sehore, Satna, and Rajgarh districts of Madhya Pradesh, India, who adopted climate-smart practices in a pilot project. Thirty-four indicators grouped in five dimensions were selected from relevant peer-reviewed articles and various technical documents through an intensive literature review. These indicators were validated through online and offline expert consultation with ninety-two experts and farmers, and weights were assigned using AHP-express. The study inferred that the final scores and weightage across dimensions and the indicators did not differ significantly, implying that each dimension and indicator is important. A strong positive linear relationship between the climate smartness score and the crop yield further suggested that the wider adoption of these interventions would reduce the climate risk in agriculture for farming communities. This framework would help monitor the effectiveness of various climate-smart agriculture programmes and improve the implementation and upscaling of such programmes.</p>","PeriodicalId":54387,"journal":{"name":"Mitigation and Adaptation Strategies for Global Change","volume":"4 1","pages":""},"PeriodicalIF":2.5000,"publicationDate":"2024-02-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Developing a composite weighted indicator-based index for monitoring and evaluating climate-smart agriculture in India\",\"authors\":\"Shiv Narayan Singh, Jigyasa Bisaria, Bhaskar Sinha, Maneesh Kumar Patasaraiya, P. P. Sreerag\",\"doi\":\"10.1007/s11027-024-10109-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Climate change is a serious concern that threatens global food security in several ways and exerts pressure on the already stressed agriculture system. The future prediction of a decline in the yield of major food grains like rice, wheat, and maize due to adverse impacts of increased warming and other climatic variabilities paves the way to shift the existing agriculture practices to more resource-efficient agriculture. This has entailed the government promoting climate-smart agriculture with its triple objectives, i.e. adaptation, mitigation, and food security. The current study developed a composite weighted indicator-based index to compute climate smartness score (CSS) at the farm level in India and tested its effectiveness in measuring the climate resilience of the farmers in Sehore, Satna, and Rajgarh districts of Madhya Pradesh, India, who adopted climate-smart practices in a pilot project. Thirty-four indicators grouped in five dimensions were selected from relevant peer-reviewed articles and various technical documents through an intensive literature review. These indicators were validated through online and offline expert consultation with ninety-two experts and farmers, and weights were assigned using AHP-express. The study inferred that the final scores and weightage across dimensions and the indicators did not differ significantly, implying that each dimension and indicator is important. A strong positive linear relationship between the climate smartness score and the crop yield further suggested that the wider adoption of these interventions would reduce the climate risk in agriculture for farming communities. This framework would help monitor the effectiveness of various climate-smart agriculture programmes and improve the implementation and upscaling of such programmes.</p>\",\"PeriodicalId\":54387,\"journal\":{\"name\":\"Mitigation and Adaptation Strategies for Global Change\",\"volume\":\"4 1\",\"pages\":\"\"},\"PeriodicalIF\":2.5000,\"publicationDate\":\"2024-02-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Mitigation and Adaptation Strategies for Global Change\",\"FirstCategoryId\":\"93\",\"ListUrlMain\":\"https://doi.org/10.1007/s11027-024-10109-5\",\"RegionNum\":3,\"RegionCategory\":\"环境科学与生态学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Mitigation and Adaptation Strategies for Global Change","FirstCategoryId":"93","ListUrlMain":"https://doi.org/10.1007/s11027-024-10109-5","RegionNum":3,"RegionCategory":"环境科学与生态学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
Developing a composite weighted indicator-based index for monitoring and evaluating climate-smart agriculture in India
Climate change is a serious concern that threatens global food security in several ways and exerts pressure on the already stressed agriculture system. The future prediction of a decline in the yield of major food grains like rice, wheat, and maize due to adverse impacts of increased warming and other climatic variabilities paves the way to shift the existing agriculture practices to more resource-efficient agriculture. This has entailed the government promoting climate-smart agriculture with its triple objectives, i.e. adaptation, mitigation, and food security. The current study developed a composite weighted indicator-based index to compute climate smartness score (CSS) at the farm level in India and tested its effectiveness in measuring the climate resilience of the farmers in Sehore, Satna, and Rajgarh districts of Madhya Pradesh, India, who adopted climate-smart practices in a pilot project. Thirty-four indicators grouped in five dimensions were selected from relevant peer-reviewed articles and various technical documents through an intensive literature review. These indicators were validated through online and offline expert consultation with ninety-two experts and farmers, and weights were assigned using AHP-express. The study inferred that the final scores and weightage across dimensions and the indicators did not differ significantly, implying that each dimension and indicator is important. A strong positive linear relationship between the climate smartness score and the crop yield further suggested that the wider adoption of these interventions would reduce the climate risk in agriculture for farming communities. This framework would help monitor the effectiveness of various climate-smart agriculture programmes and improve the implementation and upscaling of such programmes.
期刊介绍:
The Earth''s biosphere is being transformed by various anthropogenic activities. Mitigation and Adaptation Strategies for Global Change addresses a wide range of environment, economic and energy topics and timely issues including global climate change, stratospheric ozone depletion, acid deposition, eutrophication of terrestrial and aquatic ecosystems, species extinction and loss of biological diversity, deforestation and forest degradation, desertification, soil resource degradation, land-use change, sea level rise, destruction of coastal zones, depletion of fresh water and marine fisheries, loss of wetlands and riparian zones and hazardous waste management.
Response options to mitigate these threats or to adapt to changing environs are needed to ensure a sustainable biosphere for all forms of life. To that end, Mitigation and Adaptation Strategies for Global Change provides a forum to encourage the conceptualization, critical examination and debate regarding response options. The aim of this journal is to provide a forum to review, analyze and stimulate the development, testing and implementation of mitigation and adaptation strategies at regional, national and global scales. One of the primary goals of this journal is to contribute to real-time policy analysis and development as national and international policies and agreements are discussed and promulgated.