{"title":"Deep3DSketch-im:通过单张徒手草图快速生成高保真人工智能三维模型","authors":"","doi":"10.1631/fitee.2300314","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>The rise of artificial intelligence generated content (AIGC) has been remarkable in the language and image fields, but artificial intelligence (AI) generated three-dimensional (3D) models are still under-explored due to their complex nature and lack of training data. The conventional approach of creating 3D content through computer-aided design (CAD) is labor-intensive and requires expertise, making it challenging for novice users. To address this issue, we propose a sketch-based 3D modeling approach, Deep3DSketch-im, which uses a single freehand sketch for modeling. This is a challenging task due to the sparsity and ambiguity. Deep3DSketch-im uses a novel data representation called the signed distance field (SDF) to improve the sketch-to-3D model process by incorporating an implicit continuous field instead of voxel or points, and a specially designed neural network that can capture point and local features. Extensive experiments are conducted to demonstrate the effectiveness of the approach, achieving state-of-the-art (SOTA) performance on both synthetic and real datasets. Additionally, users show more satisfaction with results generated by Deep3DSketch-im, as reported in a user study. We believe that Deep3DSketch-im has the potential to revolutionize the process of 3D modeling by providing an intuitive and easy-to-use solution for novice users.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"144 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Deep3DSketch-im: rapid high-fidelity AI 3D model generation by single freehand sketches\",\"authors\":\"\",\"doi\":\"10.1631/fitee.2300314\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>The rise of artificial intelligence generated content (AIGC) has been remarkable in the language and image fields, but artificial intelligence (AI) generated three-dimensional (3D) models are still under-explored due to their complex nature and lack of training data. The conventional approach of creating 3D content through computer-aided design (CAD) is labor-intensive and requires expertise, making it challenging for novice users. To address this issue, we propose a sketch-based 3D modeling approach, Deep3DSketch-im, which uses a single freehand sketch for modeling. This is a challenging task due to the sparsity and ambiguity. Deep3DSketch-im uses a novel data representation called the signed distance field (SDF) to improve the sketch-to-3D model process by incorporating an implicit continuous field instead of voxel or points, and a specially designed neural network that can capture point and local features. Extensive experiments are conducted to demonstrate the effectiveness of the approach, achieving state-of-the-art (SOTA) performance on both synthetic and real datasets. Additionally, users show more satisfaction with results generated by Deep3DSketch-im, as reported in a user study. We believe that Deep3DSketch-im has the potential to revolutionize the process of 3D modeling by providing an intuitive and easy-to-use solution for novice users.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"144 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300314\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300314","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
Deep3DSketch-im: rapid high-fidelity AI 3D model generation by single freehand sketches
Abstract
The rise of artificial intelligence generated content (AIGC) has been remarkable in the language and image fields, but artificial intelligence (AI) generated three-dimensional (3D) models are still under-explored due to their complex nature and lack of training data. The conventional approach of creating 3D content through computer-aided design (CAD) is labor-intensive and requires expertise, making it challenging for novice users. To address this issue, we propose a sketch-based 3D modeling approach, Deep3DSketch-im, which uses a single freehand sketch for modeling. This is a challenging task due to the sparsity and ambiguity. Deep3DSketch-im uses a novel data representation called the signed distance field (SDF) to improve the sketch-to-3D model process by incorporating an implicit continuous field instead of voxel or points, and a specially designed neural network that can capture point and local features. Extensive experiments are conducted to demonstrate the effectiveness of the approach, achieving state-of-the-art (SOTA) performance on both synthetic and real datasets. Additionally, users show more satisfaction with results generated by Deep3DSketch-im, as reported in a user study. We believe that Deep3DSketch-im has the potential to revolutionize the process of 3D modeling by providing an intuitive and easy-to-use solution for novice users.
期刊介绍:
Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.