通过基于麻雀搜索算法的协同设计算法实现多代理系统的修正动态事件触发规模编队控制

IF 2.7 3区 工程技术 Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Frontiers of Information Technology & Electronic Engineering Pub Date : 2024-02-13 DOI:10.1631/fitee.2300615
Yanping Yang, Siyu Ma, Dawei Li, Jinghui Suo
{"title":"通过基于麻雀搜索算法的协同设计算法实现多代理系统的修正动态事件触发规模编队控制","authors":"Yanping Yang, Siyu Ma, Dawei Li, Jinghui Suo","doi":"10.1631/fitee.2300615","DOIUrl":null,"url":null,"abstract":"<p>This paper is concerned with the scaled formation control problem for multi-agent systems (MASs) over fixed and switching topologies. First, a modified resilient dynamic event-triggered (DET) mechanism involving an auxiliary dynamic variable (ADV) based on sampled data is proposed. In the proposed DET mechanism, a random variable obeying the Bernoulli distribution is introduced to express the idle and busy situations of communication networks. Meanwhile, the operation of absolute value is introduced into the triggering condition to effectively reduce the formation error. Second, a scaled formation control protocol with the proposed resilient DET mechanism is designed over fixed and switching topologies. The scaled formation error system is modeled as a time-varying delay system. Then, several sufficient stability criteria are derived by constructing appropriate Lyapunov–Krasovskii functionals (LKFs). A co-design algorithm based on the sparrow search algorithm (SSA) is presented to design the control gains and triggering parameters jointly. Finally, numerical simulations of multiple unmanned aerial vehicles (UAVs) are presented to validate the designed control method.</p>","PeriodicalId":12608,"journal":{"name":"Frontiers of Information Technology & Electronic Engineering","volume":"90 1","pages":""},"PeriodicalIF":2.7000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modified dynamic event-triggered scaled formation control for multi-agent systems via a sparrow search algorithm based co-design algorithm\",\"authors\":\"Yanping Yang, Siyu Ma, Dawei Li, Jinghui Suo\",\"doi\":\"10.1631/fitee.2300615\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper is concerned with the scaled formation control problem for multi-agent systems (MASs) over fixed and switching topologies. First, a modified resilient dynamic event-triggered (DET) mechanism involving an auxiliary dynamic variable (ADV) based on sampled data is proposed. In the proposed DET mechanism, a random variable obeying the Bernoulli distribution is introduced to express the idle and busy situations of communication networks. Meanwhile, the operation of absolute value is introduced into the triggering condition to effectively reduce the formation error. Second, a scaled formation control protocol with the proposed resilient DET mechanism is designed over fixed and switching topologies. The scaled formation error system is modeled as a time-varying delay system. Then, several sufficient stability criteria are derived by constructing appropriate Lyapunov–Krasovskii functionals (LKFs). A co-design algorithm based on the sparrow search algorithm (SSA) is presented to design the control gains and triggering parameters jointly. Finally, numerical simulations of multiple unmanned aerial vehicles (UAVs) are presented to validate the designed control method.</p>\",\"PeriodicalId\":12608,\"journal\":{\"name\":\"Frontiers of Information Technology & Electronic Engineering\",\"volume\":\"90 1\",\"pages\":\"\"},\"PeriodicalIF\":2.7000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers of Information Technology & Electronic Engineering\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1631/fitee.2300615\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"COMPUTER SCIENCE, INFORMATION SYSTEMS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers of Information Technology & Electronic Engineering","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1631/fitee.2300615","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"COMPUTER SCIENCE, INFORMATION SYSTEMS","Score":null,"Total":0}
引用次数: 0

摘要

本文关注固定拓扑和切换拓扑上多代理系统(MAS)的规模编队控制问题。首先,本文提出了一种改进的弹性动态事件触发(DET)机制,其中涉及基于采样数据的辅助动态变量(ADV)。在所提出的 DET 机制中,引入了一个服从伯努利分布的随机变量来表示通信网络的空闲和繁忙情况。同时,在触发条件中引入了绝对值操作,以有效减少编队误差。其次,在固定拓扑和交换拓扑上,设计了一种采用所提出的弹性 DET 机制的缩放编队控制协议。按比例编队误差系统被建模为时变延迟系统。然后,通过构建适当的 Lyapunov-Krasovskii 函数(LKFs)推导出几个充分的稳定性标准。还提出了一种基于麻雀搜索算法(SSA)的协同设计算法,用于联合设计控制增益和触发参数。最后,对多个无人飞行器(UAV)进行了数值模拟,以验证所设计的控制方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modified dynamic event-triggered scaled formation control for multi-agent systems via a sparrow search algorithm based co-design algorithm

This paper is concerned with the scaled formation control problem for multi-agent systems (MASs) over fixed and switching topologies. First, a modified resilient dynamic event-triggered (DET) mechanism involving an auxiliary dynamic variable (ADV) based on sampled data is proposed. In the proposed DET mechanism, a random variable obeying the Bernoulli distribution is introduced to express the idle and busy situations of communication networks. Meanwhile, the operation of absolute value is introduced into the triggering condition to effectively reduce the formation error. Second, a scaled formation control protocol with the proposed resilient DET mechanism is designed over fixed and switching topologies. The scaled formation error system is modeled as a time-varying delay system. Then, several sufficient stability criteria are derived by constructing appropriate Lyapunov–Krasovskii functionals (LKFs). A co-design algorithm based on the sparrow search algorithm (SSA) is presented to design the control gains and triggering parameters jointly. Finally, numerical simulations of multiple unmanned aerial vehicles (UAVs) are presented to validate the designed control method.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers of Information Technology & Electronic Engineering
Frontiers of Information Technology & Electronic Engineering COMPUTER SCIENCE, INFORMATION SYSTEMSCOMPU-COMPUTER SCIENCE, SOFTWARE ENGINEERING
CiteScore
6.00
自引率
10.00%
发文量
1372
期刊介绍: Frontiers of Information Technology & Electronic Engineering (ISSN 2095-9184, monthly), formerly known as Journal of Zhejiang University SCIENCE C (Computers & Electronics) (2010-2014), is an international peer-reviewed journal launched by Chinese Academy of Engineering (CAE) and Zhejiang University, co-published by Springer & Zhejiang University Press. FITEE is aimed to publish the latest implementation of applications, principles, and algorithms in the broad area of Electrical and Electronic Engineering, including but not limited to Computer Science, Information Sciences, Control, Automation, Telecommunications. There are different types of articles for your choice, including research articles, review articles, science letters, perspective, new technical notes and methods, etc.
期刊最新文献
A novel overlapping minimization SMOTE algorithm for imbalanced classification A review on the developments and space applications of mid- and long-wavelength infrared detection technologies Detecting compromised accounts caused by phone number recycling on e-commerce platforms: taking Meituan as an example Flocking fragmentation formulation for a multi-robot system under multi-hop and lossy ad hoc networks Event-triggered distributed cross-dimensional formation control for heterogeneous multi-agent systems
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1