{"title":"用时序卷积网络预测 TI-DMS 诱导的时间序列中的海马电场","authors":"Xiangyang Xu, Bin Deng, Jiang Wang, Guosheng Yi","doi":"10.1007/s11571-024-10067-3","DOIUrl":null,"url":null,"abstract":"<p>Temporal interference deep-brain magnetic stimulation (TI-DMS) induces rhythmic electric field (EF) in the hippocampus to normalize cognitive function. The rhythmic time series of the hippocampal EF is essential for the assessment of TI-DMS. However, the finite element method (FEM) takes several hours to obtain the time series of EF. In order to reduce the time cost, the temporal convolutional network (TCN) model is adopted to predict the time series of hippocampal EF induced by TI-DMS. It takes coil configuration and loaded current as input and predicts the time series of maximum and mean values of the left and right hippocampal EF. The prediction takes only a few seconds. The model parameter combination of kernel size and layers is selected optimally by cross-validation method. The experimental results for multiple subjects show that the R<sup>2</sup> of all the time series predicted by the model exceed 0.98. And the prediction accuracy is even higher as the input parameters approach the training set. These results demonstrate that the adopted model can quickly predict the time series of hippocampal EF induced by TI-DMS with relatively high accuracy, which is beneficial for future clinical applications.</p>","PeriodicalId":10500,"journal":{"name":"Cognitive Neurodynamics","volume":"9 1","pages":""},"PeriodicalIF":3.1000,"publicationDate":"2024-02-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Prediction of hippocampal electric field in time series induced by TI-DMS with temporal convolutional network\",\"authors\":\"Xiangyang Xu, Bin Deng, Jiang Wang, Guosheng Yi\",\"doi\":\"10.1007/s11571-024-10067-3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>Temporal interference deep-brain magnetic stimulation (TI-DMS) induces rhythmic electric field (EF) in the hippocampus to normalize cognitive function. The rhythmic time series of the hippocampal EF is essential for the assessment of TI-DMS. However, the finite element method (FEM) takes several hours to obtain the time series of EF. In order to reduce the time cost, the temporal convolutional network (TCN) model is adopted to predict the time series of hippocampal EF induced by TI-DMS. It takes coil configuration and loaded current as input and predicts the time series of maximum and mean values of the left and right hippocampal EF. The prediction takes only a few seconds. The model parameter combination of kernel size and layers is selected optimally by cross-validation method. The experimental results for multiple subjects show that the R<sup>2</sup> of all the time series predicted by the model exceed 0.98. And the prediction accuracy is even higher as the input parameters approach the training set. These results demonstrate that the adopted model can quickly predict the time series of hippocampal EF induced by TI-DMS with relatively high accuracy, which is beneficial for future clinical applications.</p>\",\"PeriodicalId\":10500,\"journal\":{\"name\":\"Cognitive Neurodynamics\",\"volume\":\"9 1\",\"pages\":\"\"},\"PeriodicalIF\":3.1000,\"publicationDate\":\"2024-02-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Cognitive Neurodynamics\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1007/s11571-024-10067-3\",\"RegionNum\":3,\"RegionCategory\":\"工程技术\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"NEUROSCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Cognitive Neurodynamics","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1007/s11571-024-10067-3","RegionNum":3,"RegionCategory":"工程技术","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"NEUROSCIENCES","Score":null,"Total":0}
引用次数: 0
摘要
颞叶干扰深脑磁波刺激(TI-DMS)可诱导海马体产生有节奏的电场(EF),从而使认知功能恢复正常。海马EF的节律时间序列对TI-DMS的评估至关重要。然而,有限元法(FEM)需要几个小时才能获得 EF 的时间序列。为了减少时间成本,我们采用了时序卷积网络(TCN)模型来预测 TI-DMS 诱导的海马 EF 时间序列。它将线圈配置和加载电流作为输入,预测左右海马 EF 最大值和平均值的时间序列。预测只需几秒钟。核大小和层数的模型参数组合是通过交叉验证法优化选择的。多个受试者的实验结果表明,该模型预测的所有时间序列的 R2 都超过了 0.98。当输入参数接近训练集时,预测精度更高。这些结果表明,所采用的模型能以较高的准确率快速预测 TI-DMS 所诱发的海马 EF 时间序列,有利于未来的临床应用。
Prediction of hippocampal electric field in time series induced by TI-DMS with temporal convolutional network
Temporal interference deep-brain magnetic stimulation (TI-DMS) induces rhythmic electric field (EF) in the hippocampus to normalize cognitive function. The rhythmic time series of the hippocampal EF is essential for the assessment of TI-DMS. However, the finite element method (FEM) takes several hours to obtain the time series of EF. In order to reduce the time cost, the temporal convolutional network (TCN) model is adopted to predict the time series of hippocampal EF induced by TI-DMS. It takes coil configuration and loaded current as input and predicts the time series of maximum and mean values of the left and right hippocampal EF. The prediction takes only a few seconds. The model parameter combination of kernel size and layers is selected optimally by cross-validation method. The experimental results for multiple subjects show that the R2 of all the time series predicted by the model exceed 0.98. And the prediction accuracy is even higher as the input parameters approach the training set. These results demonstrate that the adopted model can quickly predict the time series of hippocampal EF induced by TI-DMS with relatively high accuracy, which is beneficial for future clinical applications.
期刊介绍:
Cognitive Neurodynamics provides a unique forum of communication and cooperation for scientists and engineers working in the field of cognitive neurodynamics, intelligent science and applications, bridging the gap between theory and application, without any preference for pure theoretical, experimental or computational models.
The emphasis is to publish original models of cognitive neurodynamics, novel computational theories and experimental results. In particular, intelligent science inspired by cognitive neuroscience and neurodynamics is also very welcome.
The scope of Cognitive Neurodynamics covers cognitive neuroscience, neural computation based on dynamics, computer science, intelligent science as well as their interdisciplinary applications in the natural and engineering sciences. Papers that are appropriate for non-specialist readers are encouraged.
1. There is no page limit for manuscripts submitted to Cognitive Neurodynamics. Research papers should clearly represent an important advance of especially broad interest to researchers and technologists in neuroscience, biophysics, BCI, neural computer and intelligent robotics.
2. Cognitive Neurodynamics also welcomes brief communications: short papers reporting results that are of genuinely broad interest but that for one reason and another do not make a sufficiently complete story to justify a full article publication. Brief Communications should consist of approximately four manuscript pages.
3. Cognitive Neurodynamics publishes review articles in which a specific field is reviewed through an exhaustive literature survey. There are no restrictions on the number of pages. Review articles are usually invited, but submitted reviews will also be considered.