Erin M. Tonita, Christopher E. Valdivia, Annie C. J. Russell, Michael Martinez-Szewczyk, Mariana I. Bertoni, Karin Hinzer
{"title":"量化光谱反照率对双面光伏组件测量和系统模型预测的影响","authors":"Erin M. Tonita, Christopher E. Valdivia, Annie C. J. Russell, Michael Martinez-Szewczyk, Mariana I. Bertoni, Karin Hinzer","doi":"10.1002/pip.3789","DOIUrl":null,"url":null,"abstract":"<p>We provide a comprehensive analysis of the effect of spectral albedo on photovoltaic (PV) module measurements and system model predictions. We demonstrate how to account for albedo in indoor bifacial device measurements by adjusting the applied irradiance using the scaled rear irradiance method, exemplified on fabricated silicon heterojunction (SHJ) modules. System model performance is studied using a detailed 3D finite-element model, DUET, for fixed-tilt and horizontal single-axis tracked (SAT) arrays between 15 and 75°N. Spectral effects cause variations in measured SHJ module short-circuit current up to 2% and efficiency variation up to 0.3% abs. We further demonstrate that rear-side spectral mismatch factors (SMMs) resulting from including or omitting spectral albedo in PV system modeling vary between ±13%, while total (front+rear) SMMs vary up to 3%, depending on the deployment configuration and latitude. SAT array SMMs are weakly correlated with latitude, while fixed-tilt array SMMs increase with latitude, driven by an increasing proportion of ground-reflected light on the front-side of modules. Ground-reflections can constitute between 2% and 32% of total incident module irradiance, with notably high (>10%) contributions for fixed-tilt arrays at high latitude. Effects of spectral albedo are most significant for: (1) fixed-tilt deployments at high latitudes, (2) wide bandgap technologies such as perovskite and cadmium telluride cells, (3) albedos which vary steeply over the technology's absorption range, and (4) high albedo ground covers. Overall, we demonstrate that omitting spectral albedo effects can result in PV measurement and system-level modeling uncertainties on the order of several percent in these cases.</p>","PeriodicalId":223,"journal":{"name":"Progress in Photovoltaics","volume":"32 7","pages":"468-480"},"PeriodicalIF":8.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3789","citationCount":"0","resultStr":"{\"title\":\"Quantifying spectral albedo effects on bifacial photovoltaic module measurements and system model predictions\",\"authors\":\"Erin M. Tonita, Christopher E. Valdivia, Annie C. J. Russell, Michael Martinez-Szewczyk, Mariana I. Bertoni, Karin Hinzer\",\"doi\":\"10.1002/pip.3789\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>We provide a comprehensive analysis of the effect of spectral albedo on photovoltaic (PV) module measurements and system model predictions. We demonstrate how to account for albedo in indoor bifacial device measurements by adjusting the applied irradiance using the scaled rear irradiance method, exemplified on fabricated silicon heterojunction (SHJ) modules. System model performance is studied using a detailed 3D finite-element model, DUET, for fixed-tilt and horizontal single-axis tracked (SAT) arrays between 15 and 75°N. Spectral effects cause variations in measured SHJ module short-circuit current up to 2% and efficiency variation up to 0.3% abs. We further demonstrate that rear-side spectral mismatch factors (SMMs) resulting from including or omitting spectral albedo in PV system modeling vary between ±13%, while total (front+rear) SMMs vary up to 3%, depending on the deployment configuration and latitude. SAT array SMMs are weakly correlated with latitude, while fixed-tilt array SMMs increase with latitude, driven by an increasing proportion of ground-reflected light on the front-side of modules. Ground-reflections can constitute between 2% and 32% of total incident module irradiance, with notably high (>10%) contributions for fixed-tilt arrays at high latitude. Effects of spectral albedo are most significant for: (1) fixed-tilt deployments at high latitudes, (2) wide bandgap technologies such as perovskite and cadmium telluride cells, (3) albedos which vary steeply over the technology's absorption range, and (4) high albedo ground covers. Overall, we demonstrate that omitting spectral albedo effects can result in PV measurement and system-level modeling uncertainties on the order of several percent in these cases.</p>\",\"PeriodicalId\":223,\"journal\":{\"name\":\"Progress in Photovoltaics\",\"volume\":\"32 7\",\"pages\":\"468-480\"},\"PeriodicalIF\":8.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1002/pip.3789\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Progress in Photovoltaics\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/pip.3789\",\"RegionNum\":2,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"ENERGY & FUELS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Progress in Photovoltaics","FirstCategoryId":"88","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/pip.3789","RegionNum":2,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"ENERGY & FUELS","Score":null,"Total":0}
Quantifying spectral albedo effects on bifacial photovoltaic module measurements and system model predictions
We provide a comprehensive analysis of the effect of spectral albedo on photovoltaic (PV) module measurements and system model predictions. We demonstrate how to account for albedo in indoor bifacial device measurements by adjusting the applied irradiance using the scaled rear irradiance method, exemplified on fabricated silicon heterojunction (SHJ) modules. System model performance is studied using a detailed 3D finite-element model, DUET, for fixed-tilt and horizontal single-axis tracked (SAT) arrays between 15 and 75°N. Spectral effects cause variations in measured SHJ module short-circuit current up to 2% and efficiency variation up to 0.3% abs. We further demonstrate that rear-side spectral mismatch factors (SMMs) resulting from including or omitting spectral albedo in PV system modeling vary between ±13%, while total (front+rear) SMMs vary up to 3%, depending on the deployment configuration and latitude. SAT array SMMs are weakly correlated with latitude, while fixed-tilt array SMMs increase with latitude, driven by an increasing proportion of ground-reflected light on the front-side of modules. Ground-reflections can constitute between 2% and 32% of total incident module irradiance, with notably high (>10%) contributions for fixed-tilt arrays at high latitude. Effects of spectral albedo are most significant for: (1) fixed-tilt deployments at high latitudes, (2) wide bandgap technologies such as perovskite and cadmium telluride cells, (3) albedos which vary steeply over the technology's absorption range, and (4) high albedo ground covers. Overall, we demonstrate that omitting spectral albedo effects can result in PV measurement and system-level modeling uncertainties on the order of several percent in these cases.
期刊介绍:
Progress in Photovoltaics offers a prestigious forum for reporting advances in this rapidly developing technology, aiming to reach all interested professionals, researchers and energy policy-makers.
The key criterion is that all papers submitted should report substantial “progress” in photovoltaics.
Papers are encouraged that report substantial “progress” such as gains in independently certified solar cell efficiency, eligible for a new entry in the journal''s widely referenced Solar Cell Efficiency Tables.
Examples of papers that will not be considered for publication are those that report development in materials without relation to data on cell performance, routine analysis, characterisation or modelling of cells or processing sequences, routine reports of system performance, improvements in electronic hardware design, or country programs, although invited papers may occasionally be solicited in these areas to capture accumulated “progress”.