Daniel M. Heligman, Alex M. Potts, and R. Valdés Aguilar
{"title":"分环谐振器近场和反铁磁磁子杂化的数值模拟","authors":"Daniel M. Heligman, Alex M. Potts, and R. Valdés Aguilar","doi":"10.1364/ome.510831","DOIUrl":null,"url":null,"abstract":"We report on the results of finite difference time domain (FDTD) simulations of the terahertz response of a split ring resonator (SRR) metamaterial coupled to a hypothetical antiferromagnetic material (AFM) characterized by a magnon resonance. We find a hybridization of the SRR’s local magnetic field and the magnon, which manifests as an avoided crossing in the far-field transmission spectrum. We show that the strong light-matter coupling can be modelled via a two coupled oscillator model. We further evaluate the SRR-AFM coupling strength by varying the physical separation with a dielectric spacer between them. We find strong coupling for spacers thinner than 3 <i>μ</i>m, suggesting far-field transmission measurements of metamaterial near-fields to be a versatile platform to investigate magnetic excitations of quantum materials.","PeriodicalId":19548,"journal":{"name":"Optical Materials Express","volume":"150 1","pages":""},"PeriodicalIF":2.8000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical simulation of split ring resonator near-fields and antiferromagnetic magnon hybridization\",\"authors\":\"Daniel M. Heligman, Alex M. Potts, and R. Valdés Aguilar\",\"doi\":\"10.1364/ome.510831\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report on the results of finite difference time domain (FDTD) simulations of the terahertz response of a split ring resonator (SRR) metamaterial coupled to a hypothetical antiferromagnetic material (AFM) characterized by a magnon resonance. We find a hybridization of the SRR’s local magnetic field and the magnon, which manifests as an avoided crossing in the far-field transmission spectrum. We show that the strong light-matter coupling can be modelled via a two coupled oscillator model. We further evaluate the SRR-AFM coupling strength by varying the physical separation with a dielectric spacer between them. We find strong coupling for spacers thinner than 3 <i>μ</i>m, suggesting far-field transmission measurements of metamaterial near-fields to be a versatile platform to investigate magnetic excitations of quantum materials.\",\"PeriodicalId\":19548,\"journal\":{\"name\":\"Optical Materials Express\",\"volume\":\"150 1\",\"pages\":\"\"},\"PeriodicalIF\":2.8000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Optical Materials Express\",\"FirstCategoryId\":\"88\",\"ListUrlMain\":\"https://doi.org/10.1364/ome.510831\",\"RegionNum\":3,\"RegionCategory\":\"材料科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Optical Materials Express","FirstCategoryId":"88","ListUrlMain":"https://doi.org/10.1364/ome.510831","RegionNum":3,"RegionCategory":"材料科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Numerical simulation of split ring resonator near-fields and antiferromagnetic magnon hybridization
We report on the results of finite difference time domain (FDTD) simulations of the terahertz response of a split ring resonator (SRR) metamaterial coupled to a hypothetical antiferromagnetic material (AFM) characterized by a magnon resonance. We find a hybridization of the SRR’s local magnetic field and the magnon, which manifests as an avoided crossing in the far-field transmission spectrum. We show that the strong light-matter coupling can be modelled via a two coupled oscillator model. We further evaluate the SRR-AFM coupling strength by varying the physical separation with a dielectric spacer between them. We find strong coupling for spacers thinner than 3 μm, suggesting far-field transmission measurements of metamaterial near-fields to be a versatile platform to investigate magnetic excitations of quantum materials.
期刊介绍:
The Optical Society (OSA) publishes high-quality, peer-reviewed articles in its portfolio of journals, which serve the full breadth of the optics and photonics community.
Optical Materials Express (OMEx), OSA''s open-access, rapid-review journal, primarily emphasizes advances in both conventional and novel optical materials, their properties, theory and modeling, synthesis and fabrication approaches for optics and photonics; how such materials contribute to novel optical behavior; and how they enable new or improved optical devices. The journal covers a full range of topics, including, but not limited to:
Artificially engineered optical structures
Biomaterials
Optical detector materials
Optical storage media
Materials for integrated optics
Nonlinear optical materials
Laser materials
Metamaterials
Nanomaterials
Organics and polymers
Soft materials
IR materials
Materials for fiber optics
Hybrid technologies
Materials for quantum photonics
Optical Materials Express considers original research articles, feature issue contributions, invited reviews, and comments on published articles. The Journal also publishes occasional short, timely opinion articles from experts and thought-leaders in the field on current or emerging topic areas that are generating significant interest.