在 COVID CT 扫描上进行迁移学习--分层分割

IF 2 4区 计算机科学 Q3 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE New Generation Computing Pub Date : 2024-02-13 DOI:10.1007/s00354-024-00240-x
{"title":"在 COVID CT 扫描上进行迁移学习--分层分割","authors":"","doi":"10.1007/s00354-024-00240-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>COVID-19—A pandemic declared by WHO in 2019 has spread worldwide, leading to many infections and deaths. The disease is fatal, and the patient develops symptoms within 14 days of the window. Diagnosis based on CT scans involves rapid and accurate detection of symptoms, and much work has already been done on segmenting infections in CT scans. However, the existing work on infection segmentation must be more efficient to segment the infection area. Therefore, this work proposes an automatic Deep Learning based model using Transfer Learning and Hierarchical techniques to segment COVID-19 infections. The proposed architecture, Transfer Learning with Hierarchical Segmentation Network (TLH-Net), comprises two encoder–decoder architectures connected in series. The encoder–decoder architecture is similar to the U-Net except for the modified 2D convolutional block, attention block and spectral pooling. In TLH-Net, the first part segments the lung contour from the CT scan slices, and the second part generates the infection mask from the lung contour maps. The model trains with the loss function TV_bin, penalizing False-Negative and False-Positive predictions. The model achieves a Dice Coefficient of 98.87% for Lung Segmentation and 86% for Infection Segmentation. The model was also tested with the unseen dataset and has achieved a 56% Dice value.</p>","PeriodicalId":54726,"journal":{"name":"New Generation Computing","volume":"144 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning-Hierarchical Segmentation on COVID CT Scans\",\"authors\":\"\",\"doi\":\"10.1007/s00354-024-00240-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>COVID-19—A pandemic declared by WHO in 2019 has spread worldwide, leading to many infections and deaths. The disease is fatal, and the patient develops symptoms within 14 days of the window. Diagnosis based on CT scans involves rapid and accurate detection of symptoms, and much work has already been done on segmenting infections in CT scans. However, the existing work on infection segmentation must be more efficient to segment the infection area. Therefore, this work proposes an automatic Deep Learning based model using Transfer Learning and Hierarchical techniques to segment COVID-19 infections. The proposed architecture, Transfer Learning with Hierarchical Segmentation Network (TLH-Net), comprises two encoder–decoder architectures connected in series. The encoder–decoder architecture is similar to the U-Net except for the modified 2D convolutional block, attention block and spectral pooling. In TLH-Net, the first part segments the lung contour from the CT scan slices, and the second part generates the infection mask from the lung contour maps. The model trains with the loss function TV_bin, penalizing False-Negative and False-Positive predictions. The model achieves a Dice Coefficient of 98.87% for Lung Segmentation and 86% for Infection Segmentation. The model was also tested with the unseen dataset and has achieved a 56% Dice value.</p>\",\"PeriodicalId\":54726,\"journal\":{\"name\":\"New Generation Computing\",\"volume\":\"144 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Generation Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00354-024-00240-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Generation Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00354-024-00240-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
引用次数: 0

摘要

摘要 COVID-19--世卫组织于 2019 年宣布的一种大流行病已在全球蔓延,导致许多人感染和死亡。这种疾病是致命的,患者在窗口期的 14 天内出现症状。基于 CT 扫描的诊断涉及快速、准确地检测症状,在 CT 扫描中分割感染方面已经做了很多工作。然而,现有的感染分割工作必须更有效地分割感染区域。因此,这项工作提出了一种基于深度学习的自动模型,利用迁移学习和层次化技术来分割 COVID-19 感染。所提出的架构,即具有分层分割网络的迁移学习(TLH-Net),由两个串联的编码器-解码器架构组成。除了改进的二维卷积块、注意力块和频谱池之外,编码器-解码器架构与 U-Net 类似。在 TLH-Net 中,第一部分根据 CT 扫描切片分割肺轮廓,第二部分根据肺轮廓图生成感染掩膜。该模型使用损失函数 TV_bin 进行训练,对假阴性和假阳性预测进行惩罚。该模型的肺部分割骰子系数达到 98.87%,感染分割骰子系数达到 86%。该模型还使用未见数据集进行了测试,并取得了 56% 的 Dice 值。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Transfer Learning-Hierarchical Segmentation on COVID CT Scans

Abstract

COVID-19—A pandemic declared by WHO in 2019 has spread worldwide, leading to many infections and deaths. The disease is fatal, and the patient develops symptoms within 14 days of the window. Diagnosis based on CT scans involves rapid and accurate detection of symptoms, and much work has already been done on segmenting infections in CT scans. However, the existing work on infection segmentation must be more efficient to segment the infection area. Therefore, this work proposes an automatic Deep Learning based model using Transfer Learning and Hierarchical techniques to segment COVID-19 infections. The proposed architecture, Transfer Learning with Hierarchical Segmentation Network (TLH-Net), comprises two encoder–decoder architectures connected in series. The encoder–decoder architecture is similar to the U-Net except for the modified 2D convolutional block, attention block and spectral pooling. In TLH-Net, the first part segments the lung contour from the CT scan slices, and the second part generates the infection mask from the lung contour maps. The model trains with the loss function TV_bin, penalizing False-Negative and False-Positive predictions. The model achieves a Dice Coefficient of 98.87% for Lung Segmentation and 86% for Infection Segmentation. The model was also tested with the unseen dataset and has achieved a 56% Dice value.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
New Generation Computing
New Generation Computing 工程技术-计算机:理论方法
CiteScore
5.90
自引率
15.40%
发文量
47
审稿时长
>12 weeks
期刊介绍: The journal is specially intended to support the development of new computational and cognitive paradigms stemming from the cross-fertilization of various research fields. These fields include, but are not limited to, programming (logic, constraint, functional, object-oriented), distributed/parallel computing, knowledge-based systems, agent-oriented systems, and cognitive aspects of human embodied knowledge. It also encourages theoretical and/or practical papers concerning all types of learning, knowledge discovery, evolutionary mechanisms, human cognition and learning, and emergent systems that can lead to key technologies enabling us to build more complex and intelligent systems. The editorial board hopes that New Generation Computing will work as a catalyst among active researchers with broad interests by ensuring a smooth publication process.
期刊最新文献
Infant Walking and Everyday Experience: Unraveling the Development of Behavior from Motor Development Improvement and Analysis of Peak Shift Demand Response Scenarios of Industrial Consumers Using an Electricity Market Model Chaotic Satin Bowerbird Optimizer Based Advanced AI Techniques for Detection of COVID-19 Diseases from CT Scans Images Dance Information Processing: Computational Approaches for Assisting Dance Composition Intelligent Bayesian Inference for Multiclass Lung Infection Diagnosis: Network Analysis of Ranked Gray Level Co-occurrence (GLCM) Features
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1