{"title":"在 COVID CT 扫描上进行迁移学习--分层分割","authors":"","doi":"10.1007/s00354-024-00240-x","DOIUrl":null,"url":null,"abstract":"<h3>Abstract</h3> <p>COVID-19—A pandemic declared by WHO in 2019 has spread worldwide, leading to many infections and deaths. The disease is fatal, and the patient develops symptoms within 14 days of the window. Diagnosis based on CT scans involves rapid and accurate detection of symptoms, and much work has already been done on segmenting infections in CT scans. However, the existing work on infection segmentation must be more efficient to segment the infection area. Therefore, this work proposes an automatic Deep Learning based model using Transfer Learning and Hierarchical techniques to segment COVID-19 infections. The proposed architecture, Transfer Learning with Hierarchical Segmentation Network (TLH-Net), comprises two encoder–decoder architectures connected in series. The encoder–decoder architecture is similar to the U-Net except for the modified 2D convolutional block, attention block and spectral pooling. In TLH-Net, the first part segments the lung contour from the CT scan slices, and the second part generates the infection mask from the lung contour maps. The model trains with the loss function TV_bin, penalizing False-Negative and False-Positive predictions. The model achieves a Dice Coefficient of 98.87% for Lung Segmentation and 86% for Infection Segmentation. The model was also tested with the unseen dataset and has achieved a 56% Dice value.</p>","PeriodicalId":54726,"journal":{"name":"New Generation Computing","volume":"144 1","pages":""},"PeriodicalIF":2.0000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Transfer Learning-Hierarchical Segmentation on COVID CT Scans\",\"authors\":\"\",\"doi\":\"10.1007/s00354-024-00240-x\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<h3>Abstract</h3> <p>COVID-19—A pandemic declared by WHO in 2019 has spread worldwide, leading to many infections and deaths. The disease is fatal, and the patient develops symptoms within 14 days of the window. Diagnosis based on CT scans involves rapid and accurate detection of symptoms, and much work has already been done on segmenting infections in CT scans. However, the existing work on infection segmentation must be more efficient to segment the infection area. Therefore, this work proposes an automatic Deep Learning based model using Transfer Learning and Hierarchical techniques to segment COVID-19 infections. The proposed architecture, Transfer Learning with Hierarchical Segmentation Network (TLH-Net), comprises two encoder–decoder architectures connected in series. The encoder–decoder architecture is similar to the U-Net except for the modified 2D convolutional block, attention block and spectral pooling. In TLH-Net, the first part segments the lung contour from the CT scan slices, and the second part generates the infection mask from the lung contour maps. The model trains with the loss function TV_bin, penalizing False-Negative and False-Positive predictions. The model achieves a Dice Coefficient of 98.87% for Lung Segmentation and 86% for Infection Segmentation. The model was also tested with the unseen dataset and has achieved a 56% Dice value.</p>\",\"PeriodicalId\":54726,\"journal\":{\"name\":\"New Generation Computing\",\"volume\":\"144 1\",\"pages\":\"\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"New Generation Computing\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s00354-024-00240-x\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"New Generation Computing","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s00354-024-00240-x","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Transfer Learning-Hierarchical Segmentation on COVID CT Scans
Abstract
COVID-19—A pandemic declared by WHO in 2019 has spread worldwide, leading to many infections and deaths. The disease is fatal, and the patient develops symptoms within 14 days of the window. Diagnosis based on CT scans involves rapid and accurate detection of symptoms, and much work has already been done on segmenting infections in CT scans. However, the existing work on infection segmentation must be more efficient to segment the infection area. Therefore, this work proposes an automatic Deep Learning based model using Transfer Learning and Hierarchical techniques to segment COVID-19 infections. The proposed architecture, Transfer Learning with Hierarchical Segmentation Network (TLH-Net), comprises two encoder–decoder architectures connected in series. The encoder–decoder architecture is similar to the U-Net except for the modified 2D convolutional block, attention block and spectral pooling. In TLH-Net, the first part segments the lung contour from the CT scan slices, and the second part generates the infection mask from the lung contour maps. The model trains with the loss function TV_bin, penalizing False-Negative and False-Positive predictions. The model achieves a Dice Coefficient of 98.87% for Lung Segmentation and 86% for Infection Segmentation. The model was also tested with the unseen dataset and has achieved a 56% Dice value.
期刊介绍:
The journal is specially intended to support the development of new computational and cognitive paradigms stemming from the cross-fertilization of various research fields. These fields include, but are not limited to, programming (logic, constraint, functional, object-oriented), distributed/parallel computing, knowledge-based systems, agent-oriented systems, and cognitive aspects of human embodied knowledge. It also encourages theoretical and/or practical papers concerning all types of learning, knowledge discovery, evolutionary mechanisms, human cognition and learning, and emergent systems that can lead to key technologies enabling us to build more complex and intelligent systems. The editorial board hopes that New Generation Computing will work as a catalyst among active researchers with broad interests by ensuring a smooth publication process.