{"title":"非理想 UE 硬件条件下分布式无小区大规模 MIMO 的联合数据功率控制和 LSFD 设计","authors":"Ning Li, Pingzhi Fan","doi":"10.1186/s13638-024-02334-y","DOIUrl":null,"url":null,"abstract":"<p>This paper investigates distributed cell-free massive multiple-input multiple-output with non-ideal user equipment hardware under spatially correlated channels. By employing the use-and-then-forget technique, a lower capacity bound is derived based on the established generalized UE hardware impairments model. In addition, maximum ratio combining can be used to derive a closed-form expression of the spectral efficiency (SE), which offers novel insights into the impact of non-ideal UE hardware on network performance. Furthermore, a max–min SE fairness problem with UE hardware impairments is established where the optimization variables are data power and large-scale fading decoding (LSFD) vectors. Since this is a non-convex problem, we devise an iterative alternating optimization algorithm based on the bisection search to acquire the globally optimal solution. Numerical results indicate that the recommended joint data power control and LSFD design algorithm provides higher SE for the weakest UE, thus significantly enhancing the total SE of the network.</p>","PeriodicalId":12040,"journal":{"name":"EURASIP Journal on Wireless Communications and Networking","volume":"6 1","pages":""},"PeriodicalIF":2.3000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint data power control and LSFD design in distributed cell-free massive MIMO under non-ideal UE hardware\",\"authors\":\"Ning Li, Pingzhi Fan\",\"doi\":\"10.1186/s13638-024-02334-y\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>This paper investigates distributed cell-free massive multiple-input multiple-output with non-ideal user equipment hardware under spatially correlated channels. By employing the use-and-then-forget technique, a lower capacity bound is derived based on the established generalized UE hardware impairments model. In addition, maximum ratio combining can be used to derive a closed-form expression of the spectral efficiency (SE), which offers novel insights into the impact of non-ideal UE hardware on network performance. Furthermore, a max–min SE fairness problem with UE hardware impairments is established where the optimization variables are data power and large-scale fading decoding (LSFD) vectors. Since this is a non-convex problem, we devise an iterative alternating optimization algorithm based on the bisection search to acquire the globally optimal solution. Numerical results indicate that the recommended joint data power control and LSFD design algorithm provides higher SE for the weakest UE, thus significantly enhancing the total SE of the network.</p>\",\"PeriodicalId\":12040,\"journal\":{\"name\":\"EURASIP Journal on Wireless Communications and Networking\",\"volume\":\"6 1\",\"pages\":\"\"},\"PeriodicalIF\":2.3000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EURASIP Journal on Wireless Communications and Networking\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1186/s13638-024-02334-y\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"ENGINEERING, ELECTRICAL & ELECTRONIC\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EURASIP Journal on Wireless Communications and Networking","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1186/s13638-024-02334-y","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"ENGINEERING, ELECTRICAL & ELECTRONIC","Score":null,"Total":0}
Joint data power control and LSFD design in distributed cell-free massive MIMO under non-ideal UE hardware
This paper investigates distributed cell-free massive multiple-input multiple-output with non-ideal user equipment hardware under spatially correlated channels. By employing the use-and-then-forget technique, a lower capacity bound is derived based on the established generalized UE hardware impairments model. In addition, maximum ratio combining can be used to derive a closed-form expression of the spectral efficiency (SE), which offers novel insights into the impact of non-ideal UE hardware on network performance. Furthermore, a max–min SE fairness problem with UE hardware impairments is established where the optimization variables are data power and large-scale fading decoding (LSFD) vectors. Since this is a non-convex problem, we devise an iterative alternating optimization algorithm based on the bisection search to acquire the globally optimal solution. Numerical results indicate that the recommended joint data power control and LSFD design algorithm provides higher SE for the weakest UE, thus significantly enhancing the total SE of the network.
期刊介绍:
The overall aim of the EURASIP Journal on Wireless Communications and Networking (EURASIP JWCN) is to bring together science and applications of wireless communications and networking technologies with emphasis on signal processing techniques and tools. It is directed at both practicing engineers and academic researchers. EURASIP Journal on Wireless Communications and Networking will highlight the continued growth and new challenges in wireless technology, for both application development and basic research. Articles should emphasize original results relating to the theory and/or applications of wireless communications and networking. Review articles, especially those emphasizing multidisciplinary views of communications and networking, are also welcome. EURASIP Journal on Wireless Communications and Networking employs a paperless, electronic submission and evaluation system to promote a rapid turnaround in the peer-review process.
The journal is an Open Access journal since 2004.