分布稳健的可能性优化框架

IF 4.8 2区 计算机科学 Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Fuzzy Optimization and Decision Making Pub Date : 2024-02-07 DOI:10.1007/s10700-024-09420-2
Romain Guillaume, Adam Kasperski, Paweł Zieliński
{"title":"分布稳健的可能性优化框架","authors":"Romain Guillaume, Adam Kasperski, Paweł Zieliński","doi":"10.1007/s10700-024-09420-2","DOIUrl":null,"url":null,"abstract":"<p>In this paper, an optimization problem with uncertain constraint coefficients is considered. Possibility theory is used to model the uncertainty. Namely, a joint possibility distribution in constraint coefficient realizations, called scenarios, is specified. This possibility distribution induces a necessity measure in a scenario set, which in turn describes an ambiguity set of probability distributions in a scenario set. The distributionally robust approach is then used to convert the imprecise constraints into deterministic equivalents. Namely, the left-hand side of an imprecise constraint is evaluated by using a risk measure with respect to the worst probability distribution that can occur. In this paper, the Conditional Value at Risk is used as the risk measure, which generalizes the strict robust, and expected value approaches commonly used in literature. A general framework for solving such a class of problems is described. Some cases which can be solved in polynomial time are identified.</p>","PeriodicalId":55131,"journal":{"name":"Fuzzy Optimization and Decision Making","volume":"65 1","pages":""},"PeriodicalIF":4.8000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A framework of distributionally robust possibilistic optimization\",\"authors\":\"Romain Guillaume, Adam Kasperski, Paweł Zieliński\",\"doi\":\"10.1007/s10700-024-09420-2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>In this paper, an optimization problem with uncertain constraint coefficients is considered. Possibility theory is used to model the uncertainty. Namely, a joint possibility distribution in constraint coefficient realizations, called scenarios, is specified. This possibility distribution induces a necessity measure in a scenario set, which in turn describes an ambiguity set of probability distributions in a scenario set. The distributionally robust approach is then used to convert the imprecise constraints into deterministic equivalents. Namely, the left-hand side of an imprecise constraint is evaluated by using a risk measure with respect to the worst probability distribution that can occur. In this paper, the Conditional Value at Risk is used as the risk measure, which generalizes the strict robust, and expected value approaches commonly used in literature. A general framework for solving such a class of problems is described. Some cases which can be solved in polynomial time are identified.</p>\",\"PeriodicalId\":55131,\"journal\":{\"name\":\"Fuzzy Optimization and Decision Making\",\"volume\":\"65 1\",\"pages\":\"\"},\"PeriodicalIF\":4.8000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fuzzy Optimization and Decision Making\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://doi.org/10.1007/s10700-024-09420-2\",\"RegionNum\":2,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fuzzy Optimization and Decision Making","FirstCategoryId":"94","ListUrlMain":"https://doi.org/10.1007/s10700-024-09420-2","RegionNum":2,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE","Score":null,"Total":0}
引用次数: 0

摘要

本文考虑了一个具有不确定约束系数的优化问题。不确定性采用可能性理论建模。即,在约束系数实现中指定一个联合可能性分布,称为情景。这种可能性分布在方案集中产生了一种必要性度量,而这种必要性度量反过来又描述了方案集中概率分布的模糊集。然后,利用分布稳健法将不精确约束条件转换为确定性等价条件。也就是说,通过使用与可能发生的最坏概率分布相关的风险度量来评估不精确约束的左侧。本文使用条件风险值作为风险度量,它概括了文献中常用的严格稳健值和期望值方法。本文描述了解决这类问题的一般框架。确定了一些可以在多项式时间内求解的情况。
本文章由计算机程序翻译,如有差异,请以英文原文为准。

摘要图片

查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A framework of distributionally robust possibilistic optimization

In this paper, an optimization problem with uncertain constraint coefficients is considered. Possibility theory is used to model the uncertainty. Namely, a joint possibility distribution in constraint coefficient realizations, called scenarios, is specified. This possibility distribution induces a necessity measure in a scenario set, which in turn describes an ambiguity set of probability distributions in a scenario set. The distributionally robust approach is then used to convert the imprecise constraints into deterministic equivalents. Namely, the left-hand side of an imprecise constraint is evaluated by using a risk measure with respect to the worst probability distribution that can occur. In this paper, the Conditional Value at Risk is used as the risk measure, which generalizes the strict robust, and expected value approaches commonly used in literature. A general framework for solving such a class of problems is described. Some cases which can be solved in polynomial time are identified.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Fuzzy Optimization and Decision Making
Fuzzy Optimization and Decision Making 工程技术-计算机:人工智能
CiteScore
11.50
自引率
10.60%
发文量
27
审稿时长
6 months
期刊介绍: The key objective of Fuzzy Optimization and Decision Making is to promote research and the development of fuzzy technology and soft-computing methodologies to enhance our ability to address complicated optimization and decision making problems involving non-probabilitic uncertainty. The journal will cover all aspects of employing fuzzy technologies to see optimal solutions and assist in making the best possible decisions. It will provide a global forum for advancing the state-of-the-art theory and practice of fuzzy optimization and decision making in the presence of uncertainty. Any theoretical, empirical, and experimental work related to fuzzy modeling and associated mathematics, solution methods, and systems is welcome. The goal is to help foster the understanding, development, and practice of fuzzy technologies for solving economic, engineering, management, and societal problems. The journal will provide a forum for authors and readers in the fields of business, economics, engineering, mathematics, management science, operations research, and systems.
期刊最新文献
Portfolio selection with second order uncertain dominance constraint Valuation of convertible bond based on uncertain fractional differential equation China’s carbon emission allowance prices forecasting and option designing in uncertain environment Are the queueing systems in practice random or uncertain? Evidence from online car-hailing data in Beijing Modeling of linear uncertain portfolio selection with uncertain constraint and risk index
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1