{"title":"用于复制点模式多类监督分类的功能输入神经网络","authors":"Kateřina Pawlasová, Iva Karafiátová, Jiří Dvořák","doi":"10.1007/s11634-024-00579-5","DOIUrl":null,"url":null,"abstract":"<div><p>A spatial point pattern is a collection of points observed in a bounded region of the Euclidean plane or space. With the dynamic development of modern imaging methods, large datasets of point patterns are available representing for example sub-cellular location patterns for human proteins or large forest populations. The main goal of this paper is to show the possibility of solving the supervised multi-class classification task for this particular type of complex data via functional neural networks. To predict the class membership for a newly observed point pattern, we compute an empirical estimate of a selected functional characteristic. Then, we consider such estimated function to be a functional variable entering the network. In a simulation study, we show that the neural network approach outperforms the kernel regression classifier that we consider a benchmark method in the point pattern setting. We also analyse a real dataset of point patterns of intramembranous particles and illustrate the practical applicability of the proposed method.</p></div>","PeriodicalId":49270,"journal":{"name":"Advances in Data Analysis and Classification","volume":"18 3","pages":"705 - 721"},"PeriodicalIF":1.4000,"publicationDate":"2024-02-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://link.springer.com/content/pdf/10.1007/s11634-024-00579-5.pdf","citationCount":"0","resultStr":"{\"title\":\"Neural networks with functional inputs for multi-class supervised classification of replicated point patterns\",\"authors\":\"Kateřina Pawlasová, Iva Karafiátová, Jiří Dvořák\",\"doi\":\"10.1007/s11634-024-00579-5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>A spatial point pattern is a collection of points observed in a bounded region of the Euclidean plane or space. With the dynamic development of modern imaging methods, large datasets of point patterns are available representing for example sub-cellular location patterns for human proteins or large forest populations. The main goal of this paper is to show the possibility of solving the supervised multi-class classification task for this particular type of complex data via functional neural networks. To predict the class membership for a newly observed point pattern, we compute an empirical estimate of a selected functional characteristic. Then, we consider such estimated function to be a functional variable entering the network. In a simulation study, we show that the neural network approach outperforms the kernel regression classifier that we consider a benchmark method in the point pattern setting. We also analyse a real dataset of point patterns of intramembranous particles and illustrate the practical applicability of the proposed method.</p></div>\",\"PeriodicalId\":49270,\"journal\":{\"name\":\"Advances in Data Analysis and Classification\",\"volume\":\"18 3\",\"pages\":\"705 - 721\"},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://link.springer.com/content/pdf/10.1007/s11634-024-00579-5.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Advances in Data Analysis and Classification\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://link.springer.com/article/10.1007/s11634-024-00579-5\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Advances in Data Analysis and Classification","FirstCategoryId":"94","ListUrlMain":"https://link.springer.com/article/10.1007/s11634-024-00579-5","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Neural networks with functional inputs for multi-class supervised classification of replicated point patterns
A spatial point pattern is a collection of points observed in a bounded region of the Euclidean plane or space. With the dynamic development of modern imaging methods, large datasets of point patterns are available representing for example sub-cellular location patterns for human proteins or large forest populations. The main goal of this paper is to show the possibility of solving the supervised multi-class classification task for this particular type of complex data via functional neural networks. To predict the class membership for a newly observed point pattern, we compute an empirical estimate of a selected functional characteristic. Then, we consider such estimated function to be a functional variable entering the network. In a simulation study, we show that the neural network approach outperforms the kernel regression classifier that we consider a benchmark method in the point pattern setting. We also analyse a real dataset of point patterns of intramembranous particles and illustrate the practical applicability of the proposed method.
期刊介绍:
The international journal Advances in Data Analysis and Classification (ADAC) is designed as a forum for high standard publications on research and applications concerning the extraction of knowable aspects from many types of data. It publishes articles on such topics as structural, quantitative, or statistical approaches for the analysis of data; advances in classification, clustering, and pattern recognition methods; strategies for modeling complex data and mining large data sets; methods for the extraction of knowledge from data, and applications of advanced methods in specific domains of practice. Articles illustrate how new domain-specific knowledge can be made available from data by skillful use of data analysis methods. The journal also publishes survey papers that outline, and illuminate the basic ideas and techniques of special approaches.