{"title":"随机动力系统的稳定规律","authors":"ROMAIN AIMINO, MATTHEW NICOL, ANDREW TÖRÖK","doi":"10.1017/etds.2024.5","DOIUrl":null,"url":null,"abstract":"In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline1.png\" /> <jats:tex-math> $[0,1]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline2.png\" /> <jats:tex-math> $\\nu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We consider a class of non-square-integrable observables <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline3.png\" /> <jats:tex-math> $\\phi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mostly of form <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline4.png\" /> <jats:tex-math> $\\phi (x)=d(x,x_0)^{-{1}/{\\alpha }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline5.png\" /> <jats:tex-math> $x_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline6.png\" /> <jats:tex-math> $\\alpha \\in (0,2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The two types of maps we concatenate are a class of piecewise <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline7.png\" /> <jats:tex-math> $C^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline8.png\" /> <jats:tex-math> $\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\"http://www.w3.org/1999/xlink\" mime-subtype=\"png\" xlink:href=\"S0143385724000051_inline9.png\" /> <jats:tex-math> $\\nu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.","PeriodicalId":50504,"journal":{"name":"Ergodic Theory and Dynamical Systems","volume":"20 1","pages":""},"PeriodicalIF":0.8000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Stable laws for random dynamical systems\",\"authors\":\"ROMAIN AIMINO, MATTHEW NICOL, ANDREW TÖRÖK\",\"doi\":\"10.1017/etds.2024.5\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline1.png\\\" /> <jats:tex-math> $[0,1]$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline2.png\\\" /> <jats:tex-math> $\\\\nu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. We consider a class of non-square-integrable observables <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline3.png\\\" /> <jats:tex-math> $\\\\phi $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, mostly of form <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline4.png\\\" /> <jats:tex-math> $\\\\phi (x)=d(x,x_0)^{-{1}/{\\\\alpha }}$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, where <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline5.png\\\" /> <jats:tex-math> $x_0$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline6.png\\\" /> <jats:tex-math> $\\\\alpha \\\\in (0,2)$ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. The two types of maps we concatenate are a class of piecewise <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline7.png\\\" /> <jats:tex-math> $C^2$ </jats:tex-math> </jats:alternatives> </jats:inline-formula> expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline8.png\\\" /> <jats:tex-math> $\\\\alpha $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>, we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by <jats:inline-formula> <jats:alternatives> <jats:inline-graphic xmlns:xlink=\\\"http://www.w3.org/1999/xlink\\\" mime-subtype=\\\"png\\\" xlink:href=\\\"S0143385724000051_inline9.png\\\" /> <jats:tex-math> $\\\\nu $ </jats:tex-math> </jats:alternatives> </jats:inline-formula>. This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.\",\"PeriodicalId\":50504,\"journal\":{\"name\":\"Ergodic Theory and Dynamical Systems\",\"volume\":\"20 1\",\"pages\":\"\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Ergodic Theory and Dynamical Systems\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://doi.org/10.1017/etds.2024.5\",\"RegionNum\":3,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATHEMATICS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Ergodic Theory and Dynamical Systems","FirstCategoryId":"100","ListUrlMain":"https://doi.org/10.1017/etds.2024.5","RegionNum":3,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATHEMATICS","Score":null,"Total":0}
In this paper, we consider random dynamical systems formed by concatenating maps acting on the unit interval $[0,1]$ in an independent and identically distributed (i.i.d.) fashion. Considered as a stationary Markov process, the random dynamical system possesses a unique stationary measure $\nu $ . We consider a class of non-square-integrable observables $\phi $ , mostly of form $\phi (x)=d(x,x_0)^{-{1}/{\alpha }}$ , where $x_0$ is a non-recurrent point (in particular a non-periodic point) satisfying some other genericity conditions and, more generally, regularly varying observables with index $\alpha \in (0,2)$ . The two types of maps we concatenate are a class of piecewise $C^2$ expanding maps and a class of intermittent maps possessing an indifferent fixed point at the origin. Under conditions on the dynamics and $\alpha $ , we establish Poisson limit laws, convergence of scaled Birkhoff sums to a stable limit law, and functional stable limit laws in both the annealed and quenched case. The scaling constants for the limit laws for almost every quenched realization are the same as those of the annealed case and determined by $\nu $ . This is in contrast to the scalings in quenched central limit theorems where the centering constants depend in a critical way upon the realization and are not the same for almost every realization.
期刊介绍:
Ergodic Theory and Dynamical Systems focuses on a rich variety of research areas which, although diverse, employ as common themes global dynamical methods. The journal provides a focus for this important and flourishing area of mathematics and brings together many major contributions in the field. The journal acts as a forum for central problems of dynamical systems and of interactions of dynamical systems with areas such as differential geometry, number theory, operator algebras, celestial and statistical mechanics, and biology.