利用从高光谱图像生成特征的卷积神经网络和机器学习分类器对柑橘果实和叶片上的病害进行自动分类

IF 1.4 4区 地球科学 Q4 ENVIRONMENTAL SCIENCES Journal of Applied Remote Sensing Pub Date : 2024-02-01 DOI:10.1117/1.jrs.18.014512
Pappu Kumar Yadav, Thomas Burks, Jianwei Qin, Moon Kim, Quentin Frederick, Megan M. Dewdney, Mark A. Ritenour
{"title":"利用从高光谱图像生成特征的卷积神经网络和机器学习分类器对柑橘果实和叶片上的病害进行自动分类","authors":"Pappu Kumar Yadav, Thomas Burks, Jianwei Qin, Moon Kim, Quentin Frederick, Megan M. Dewdney, Mark A. Ritenour","doi":"10.1117/1.jrs.18.014512","DOIUrl":null,"url":null,"abstract":"Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa that poses a quarantine threat and can restrict market access to fruits. It manifests as lesions on the fruit surface and can result in premature fruit drops, leading to reduced yield. Another significant disease affecting citrus is canker, which is caused by the bacterium Xanthomonas citri subsp. citri (syn. X. axonopodis pv. citri); it causes economic losses for growers due to fruit drops and blemishes. Early detection and management of groves infected with CBS or canker through fruit and leaf inspection can greatly benefit the Florida citrus industry. However, manual inspection and classification of disease symptoms on fruits or leaves are labor-intensive and time-consuming processes. Therefore, there is a need to develop a computer vision system capable of autonomously classifying fruits and leaves, expediting disease management in the groves. This paper aims to demonstrate the effectiveness of convolutional neural network (CNN) generated features and machine learning (ML) classifiers for detecting CBS infected fruits and leaves with canker symptoms. A custom shallow CNN with radial basis function support vector machine (RBF SVM) achieved an overall accuracy of 92.1% for classifying fruits with CBS and four other conditions (greasy spot, melanose, wind scar, and marketable), and a custom Visual Geometry Group 16 (VGG16) with the RBF SVM classified leaves with canker and four other conditions (control, greasy spot, melanoses, and scab) at an overall accuracy of 93%. These preliminary findings demonstrate the potential of utilizing hyperspectral imaging (HSI) systems for automated classification of citrus fruit and leaf diseases using shallow and deep CNN-generated features, along with ML classifiers.","PeriodicalId":54879,"journal":{"name":"Journal of Applied Remote Sensing","volume":null,"pages":null},"PeriodicalIF":1.4000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Automated classification of citrus disease on fruits and leaves using convolutional neural network generated features from hyperspectral images and machine learning classifiers\",\"authors\":\"Pappu Kumar Yadav, Thomas Burks, Jianwei Qin, Moon Kim, Quentin Frederick, Megan M. Dewdney, Mark A. Ritenour\",\"doi\":\"10.1117/1.jrs.18.014512\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa that poses a quarantine threat and can restrict market access to fruits. It manifests as lesions on the fruit surface and can result in premature fruit drops, leading to reduced yield. Another significant disease affecting citrus is canker, which is caused by the bacterium Xanthomonas citri subsp. citri (syn. X. axonopodis pv. citri); it causes economic losses for growers due to fruit drops and blemishes. Early detection and management of groves infected with CBS or canker through fruit and leaf inspection can greatly benefit the Florida citrus industry. However, manual inspection and classification of disease symptoms on fruits or leaves are labor-intensive and time-consuming processes. Therefore, there is a need to develop a computer vision system capable of autonomously classifying fruits and leaves, expediting disease management in the groves. This paper aims to demonstrate the effectiveness of convolutional neural network (CNN) generated features and machine learning (ML) classifiers for detecting CBS infected fruits and leaves with canker symptoms. A custom shallow CNN with radial basis function support vector machine (RBF SVM) achieved an overall accuracy of 92.1% for classifying fruits with CBS and four other conditions (greasy spot, melanose, wind scar, and marketable), and a custom Visual Geometry Group 16 (VGG16) with the RBF SVM classified leaves with canker and four other conditions (control, greasy spot, melanoses, and scab) at an overall accuracy of 93%. These preliminary findings demonstrate the potential of utilizing hyperspectral imaging (HSI) systems for automated classification of citrus fruit and leaf diseases using shallow and deep CNN-generated features, along with ML classifiers.\",\"PeriodicalId\":54879,\"journal\":{\"name\":\"Journal of Applied Remote Sensing\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.4000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Applied Remote Sensing\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://doi.org/10.1117/1.jrs.18.014512\",\"RegionNum\":4,\"RegionCategory\":\"地球科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q4\",\"JCRName\":\"ENVIRONMENTAL SCIENCES\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Applied Remote Sensing","FirstCategoryId":"5","ListUrlMain":"https://doi.org/10.1117/1.jrs.18.014512","RegionNum":4,"RegionCategory":"地球科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q4","JCRName":"ENVIRONMENTAL SCIENCES","Score":null,"Total":0}
引用次数: 0

摘要

柑橘黑斑病(CBS)是一种由 Phyllosticta citricarpa 引起的真菌病害,对检疫构成威胁,并可能限制水果的市场准入。它表现为果实表面的病变,可导致过早落果,从而导致减产。影响柑橘的另一种重要病害是腐烂病,它是由柑橘黄单胞菌(Xanthomonas citri subsp.通过果实和叶片检查,及早发现和管理感染 CBS 或腐烂病的果园,对佛罗里达柑橘产业大有裨益。然而,对果实或叶片上的病害症状进行人工检查和分类是一项耗费大量人力和时间的工作。因此,有必要开发一种能够自主对果实和叶片进行分类的计算机视觉系统,以加快果园的病害管理。本文旨在展示卷积神经网络(CNN)生成的特征和机器学习(ML)分类器在检测受 CBS 感染并出现腐烂症状的果实和叶片方面的有效性。采用径向基函数支持向量机(RBF SVM)的定制浅层 CNN 对感染 CBS 的果实和其他四种情况(油斑、黑斑、风疤和适销)进行分类的总体准确率为 92.1%,而采用 RBF SVM 的定制视觉几何组 16(VGG16)对感染腐烂病的叶片和其他四种情况(对照、油斑、黑斑和疮痂)进行分类的总体准确率为 93%。这些初步研究结果表明,利用浅层和深层 CNN 生成的特征以及 ML 分类器,利用高光谱成像(HSI)系统对柑橘果实和叶片病害进行自动分类是很有潜力的。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Automated classification of citrus disease on fruits and leaves using convolutional neural network generated features from hyperspectral images and machine learning classifiers
Citrus black spot (CBS) is a fungal disease caused by Phyllosticta citricarpa that poses a quarantine threat and can restrict market access to fruits. It manifests as lesions on the fruit surface and can result in premature fruit drops, leading to reduced yield. Another significant disease affecting citrus is canker, which is caused by the bacterium Xanthomonas citri subsp. citri (syn. X. axonopodis pv. citri); it causes economic losses for growers due to fruit drops and blemishes. Early detection and management of groves infected with CBS or canker through fruit and leaf inspection can greatly benefit the Florida citrus industry. However, manual inspection and classification of disease symptoms on fruits or leaves are labor-intensive and time-consuming processes. Therefore, there is a need to develop a computer vision system capable of autonomously classifying fruits and leaves, expediting disease management in the groves. This paper aims to demonstrate the effectiveness of convolutional neural network (CNN) generated features and machine learning (ML) classifiers for detecting CBS infected fruits and leaves with canker symptoms. A custom shallow CNN with radial basis function support vector machine (RBF SVM) achieved an overall accuracy of 92.1% for classifying fruits with CBS and four other conditions (greasy spot, melanose, wind scar, and marketable), and a custom Visual Geometry Group 16 (VGG16) with the RBF SVM classified leaves with canker and four other conditions (control, greasy spot, melanoses, and scab) at an overall accuracy of 93%. These preliminary findings demonstrate the potential of utilizing hyperspectral imaging (HSI) systems for automated classification of citrus fruit and leaf diseases using shallow and deep CNN-generated features, along with ML classifiers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Journal of Applied Remote Sensing
Journal of Applied Remote Sensing 环境科学-成像科学与照相技术
CiteScore
3.40
自引率
11.80%
发文量
194
审稿时长
3 months
期刊介绍: The Journal of Applied Remote Sensing is a peer-reviewed journal that optimizes the communication of concepts, information, and progress among the remote sensing community.
期刊最新文献
Few-shot synthetic aperture radar object detection algorithm based on meta-learning and variational inference Object-based strategy for generating high-resolution four-dimensional thermal surface models of buildings based on integration of visible and thermal unmanned aerial vehicle imagery Frequent oversights in on-orbit modulation transfer function estimation of optical imager onboard EO satellites Comprehensive comparison of different gridded precipitation products over geographic regions of Türkiye Monitoring soil moisture in cotton fields with synthetic aperture radar and optical data in arid and semi-arid regions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1