Paolo Berta, Salvatore Ingrassia, Giorgio Vittadini, Daniele Spinelli
{"title":"COVID-19 住院病例的潜在异质性:采用聚类加权法分析死亡率","authors":"Paolo Berta, Salvatore Ingrassia, Giorgio Vittadini, Daniele Spinelli","doi":"10.1111/anzs.12407","DOIUrl":null,"url":null,"abstract":"<p>The COVID-19 pandemic caused an unprecedented excess mortality. Since 2020, many studies have focussed on the characteristics of COVID-19 patients who did not survive. From the statistical point of view, what seems to dominate is the large heterogeneity of the populations affected by COVID-19 and the extreme difficulty in identifying subpopulations who died affected by a plurality of contemporary characteristics. In this paper, we propose an extremely flexible approach based on a cluster-weighted model, which allows us to identify latent groups of patients sharing similar characteristics at the moment of hospitalisation as well as a similar mortality. We focus on one of the hardest hit areas in Italy and study the heterogeneity in the population of patients affected by COVID-19 using administrative data on hospitalisations in the first wave of the pandemic. Results highlighted that a model-based clustering approach is essential to understand the complexity of the COVID-19 patients treated by hospitals and who die during hospitalisation.</p>","PeriodicalId":55428,"journal":{"name":"Australian & New Zealand Journal of Statistics","volume":"66 1","pages":"1-20"},"PeriodicalIF":0.8000,"publicationDate":"2024-02-13","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12407","citationCount":"0","resultStr":"{\"title\":\"Latent heterogeneity in COVID-19 hospitalisations: a cluster-weighted approach to analyse mortality\",\"authors\":\"Paolo Berta, Salvatore Ingrassia, Giorgio Vittadini, Daniele Spinelli\",\"doi\":\"10.1111/anzs.12407\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The COVID-19 pandemic caused an unprecedented excess mortality. Since 2020, many studies have focussed on the characteristics of COVID-19 patients who did not survive. From the statistical point of view, what seems to dominate is the large heterogeneity of the populations affected by COVID-19 and the extreme difficulty in identifying subpopulations who died affected by a plurality of contemporary characteristics. In this paper, we propose an extremely flexible approach based on a cluster-weighted model, which allows us to identify latent groups of patients sharing similar characteristics at the moment of hospitalisation as well as a similar mortality. We focus on one of the hardest hit areas in Italy and study the heterogeneity in the population of patients affected by COVID-19 using administrative data on hospitalisations in the first wave of the pandemic. Results highlighted that a model-based clustering approach is essential to understand the complexity of the COVID-19 patients treated by hospitals and who die during hospitalisation.</p>\",\"PeriodicalId\":55428,\"journal\":{\"name\":\"Australian & New Zealand Journal of Statistics\",\"volume\":\"66 1\",\"pages\":\"1-20\"},\"PeriodicalIF\":0.8000,\"publicationDate\":\"2024-02-13\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://onlinelibrary.wiley.com/doi/epdf/10.1111/anzs.12407\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Australian & New Zealand Journal of Statistics\",\"FirstCategoryId\":\"100\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12407\",\"RegionNum\":4,\"RegionCategory\":\"数学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"STATISTICS & PROBABILITY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Australian & New Zealand Journal of Statistics","FirstCategoryId":"100","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1111/anzs.12407","RegionNum":4,"RegionCategory":"数学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"STATISTICS & PROBABILITY","Score":null,"Total":0}
Latent heterogeneity in COVID-19 hospitalisations: a cluster-weighted approach to analyse mortality
The COVID-19 pandemic caused an unprecedented excess mortality. Since 2020, many studies have focussed on the characteristics of COVID-19 patients who did not survive. From the statistical point of view, what seems to dominate is the large heterogeneity of the populations affected by COVID-19 and the extreme difficulty in identifying subpopulations who died affected by a plurality of contemporary characteristics. In this paper, we propose an extremely flexible approach based on a cluster-weighted model, which allows us to identify latent groups of patients sharing similar characteristics at the moment of hospitalisation as well as a similar mortality. We focus on one of the hardest hit areas in Italy and study the heterogeneity in the population of patients affected by COVID-19 using administrative data on hospitalisations in the first wave of the pandemic. Results highlighted that a model-based clustering approach is essential to understand the complexity of the COVID-19 patients treated by hospitals and who die during hospitalisation.
期刊介绍:
The Australian & New Zealand Journal of Statistics is an international journal managed jointly by the Statistical Society of Australia and the New Zealand Statistical Association. Its purpose is to report significant and novel contributions in statistics, ranging across articles on statistical theory, methodology, applications and computing. The journal has a particular focus on statistical techniques that can be readily applied to real-world problems, and on application papers with an Australasian emphasis. Outstanding articles submitted to the journal may be selected as Discussion Papers, to be read at a meeting of either the Statistical Society of Australia or the New Zealand Statistical Association.
The main body of the journal is divided into three sections.
The Theory and Methods Section publishes papers containing original contributions to the theory and methodology of statistics, econometrics and probability, and seeks papers motivated by a real problem and which demonstrate the proposed theory or methodology in that situation. There is a strong preference for papers motivated by, and illustrated with, real data.
The Applications Section publishes papers demonstrating applications of statistical techniques to problems faced by users of statistics in the sciences, government and industry. A particular focus is the application of newly developed statistical methodology to real data and the demonstration of better use of established statistical methodology in an area of application. It seeks to aid teachers of statistics by placing statistical methods in context.
The Statistical Computing Section publishes papers containing new algorithms, code snippets, or software descriptions (for open source software only) which enhance the field through the application of computing. Preference is given to papers featuring publically available code and/or data, and to those motivated by statistical methods for practical problems.