基于 LSTM 的古吉拉特邦登革热病例预测:机器学习方法

A. Mehta, Kajal S Patel
{"title":"基于 LSTM 的古吉拉特邦登革热病例预测:机器学习方法","authors":"A. Mehta, Kajal S Patel","doi":"10.17485/ijst/v17i7.2748","DOIUrl":null,"url":null,"abstract":"Objectives: Dengue fever, a mosquito-borne viral disease, is particularly prevalent in tropical regions like India. Gujarat State is also one of them. Forecasting outbreaks of diseases such as dengue can prove important for public health management. The purpose of this study is to predict dengue cases in ten districts of Gujarat using the LSTM machine learning model. And if people are aware of this from the beginning, the spread of dengue can be prevented. Methods: This approach uses LSTM models to predict dengue cases using a total of 10 years (2010 to 2019) of data. From this data, data from 2010 to 2016 is used for training and data from 2017 to 2019 is used for testing. To predict dengue cases, population density, average temperature, average humidity, monthly rainfall, dengue cases with lag of one, two and twelve months. Findings: The LSTM model was applied with different parameter configurations, showing the following results: The root mean square error value is 0.04, and the R-squared (R2) score is 0.84. Many machine learning methods, like ANN, linear regression, random forest, etc., have been used to predict dengue cases in different states and countries. LSTM model gives the best results in terms of accuracy. Previously reported dengue cases, population density, and total monthly rainfall proved to be the most effective predictors of dengue in the state of Gujarat. Novelty: Models have been developed to predict dengue outbreaks in many other countries and states. The LSTM model is developed for the first time in this study for the state of Gujarat. 84% accuracy is obtained from the model. This model has been prepared by collecting environmental data and registered dengue cases in Gujarat state. Keywords: Dengue Cases Predictions, Artificial Intelligence in Healthcare, LSTM Algorithm, Disease Outbreaks, Public Health Management","PeriodicalId":508200,"journal":{"name":"Indian Journal Of Science And Technology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"LSTM-based Forecasting of Dengue Cases in Gujarat: A Machine Learning Approach\",\"authors\":\"A. Mehta, Kajal S Patel\",\"doi\":\"10.17485/ijst/v17i7.2748\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Objectives: Dengue fever, a mosquito-borne viral disease, is particularly prevalent in tropical regions like India. Gujarat State is also one of them. Forecasting outbreaks of diseases such as dengue can prove important for public health management. The purpose of this study is to predict dengue cases in ten districts of Gujarat using the LSTM machine learning model. And if people are aware of this from the beginning, the spread of dengue can be prevented. Methods: This approach uses LSTM models to predict dengue cases using a total of 10 years (2010 to 2019) of data. From this data, data from 2010 to 2016 is used for training and data from 2017 to 2019 is used for testing. To predict dengue cases, population density, average temperature, average humidity, monthly rainfall, dengue cases with lag of one, two and twelve months. Findings: The LSTM model was applied with different parameter configurations, showing the following results: The root mean square error value is 0.04, and the R-squared (R2) score is 0.84. Many machine learning methods, like ANN, linear regression, random forest, etc., have been used to predict dengue cases in different states and countries. LSTM model gives the best results in terms of accuracy. Previously reported dengue cases, population density, and total monthly rainfall proved to be the most effective predictors of dengue in the state of Gujarat. Novelty: Models have been developed to predict dengue outbreaks in many other countries and states. The LSTM model is developed for the first time in this study for the state of Gujarat. 84% accuracy is obtained from the model. This model has been prepared by collecting environmental data and registered dengue cases in Gujarat state. Keywords: Dengue Cases Predictions, Artificial Intelligence in Healthcare, LSTM Algorithm, Disease Outbreaks, Public Health Management\",\"PeriodicalId\":508200,\"journal\":{\"name\":\"Indian Journal Of Science And Technology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Indian Journal Of Science And Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17485/ijst/v17i7.2748\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Indian Journal Of Science And Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17485/ijst/v17i7.2748","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

目的:登革热是一种由蚊子传播的病毒性疾病,在印度等热带地区尤为流行。古吉拉特邦也是其中之一。预测登革热等疾病的爆发对公共卫生管理非常重要。本研究的目的是利用 LSTM 机器学习模型预测古吉拉特邦十个地区的登革热病例。如果人们从一开始就意识到这一点,就能预防登革热的传播。方法:该方法使用 LSTM 模型,利用总共 10 年(2010 年至 2019 年)的数据预测登革热病例。其中,2010 年至 2016 年的数据用于训练,2017 年至 2019 年的数据用于测试。预测登革热病例、人口密度、平均气温、平均湿度、月降雨量、登革热病例的滞后期分别为 1 个月、2 个月和 12 个月。结果应用不同参数配置的 LSTM 模型,结果如下:均方根误差值为 0.04,R 平方(R2)为 0.84。许多机器学习方法,如 ANN、线性回归、随机森林等,已被用于预测不同州和国家的登革热病例。LSTM 模型的准确率最高。事实证明,以前报告的登革热病例、人口密度和每月总降雨量是预测古吉拉特邦登革热的最有效指标。新颖性:许多其他国家和州都开发了登革热疫情预测模型。本研究首次为古吉拉特邦开发了 LSTM 模型。该模型的准确率为 84%。该模型是通过收集古吉拉特邦的环境数据和登记的登革热病例编制而成的。关键词登革热病例预测、医疗保健中的人工智能、LSTM 算法、疾病爆发、公共卫生管理
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
LSTM-based Forecasting of Dengue Cases in Gujarat: A Machine Learning Approach
Objectives: Dengue fever, a mosquito-borne viral disease, is particularly prevalent in tropical regions like India. Gujarat State is also one of them. Forecasting outbreaks of diseases such as dengue can prove important for public health management. The purpose of this study is to predict dengue cases in ten districts of Gujarat using the LSTM machine learning model. And if people are aware of this from the beginning, the spread of dengue can be prevented. Methods: This approach uses LSTM models to predict dengue cases using a total of 10 years (2010 to 2019) of data. From this data, data from 2010 to 2016 is used for training and data from 2017 to 2019 is used for testing. To predict dengue cases, population density, average temperature, average humidity, monthly rainfall, dengue cases with lag of one, two and twelve months. Findings: The LSTM model was applied with different parameter configurations, showing the following results: The root mean square error value is 0.04, and the R-squared (R2) score is 0.84. Many machine learning methods, like ANN, linear regression, random forest, etc., have been used to predict dengue cases in different states and countries. LSTM model gives the best results in terms of accuracy. Previously reported dengue cases, population density, and total monthly rainfall proved to be the most effective predictors of dengue in the state of Gujarat. Novelty: Models have been developed to predict dengue outbreaks in many other countries and states. The LSTM model is developed for the first time in this study for the state of Gujarat. 84% accuracy is obtained from the model. This model has been prepared by collecting environmental data and registered dengue cases in Gujarat state. Keywords: Dengue Cases Predictions, Artificial Intelligence in Healthcare, LSTM Algorithm, Disease Outbreaks, Public Health Management
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical and Finite Element Analysis of Pressure Vessel Image Analysis and Classification Using HRSVM-CNN for Land-Cover Classification by Using Remote Sensing Images Lattice Ordered G􀀀Semirings On the Solution of Blasius Boundary Layer Equations of Prandtl-Eyring Fluid Flow Past a Stretching Sheet Optimizing High Data Rate Up to 2.5 Tbps Transmission using 64-Channel DWDM System with DCF and NRZ Modulation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1