{"title":"奇异矩阵和对切圆","authors":"A. Beardon","doi":"10.1017/mag.2024.3","DOIUrl":null,"url":null,"abstract":"The idea of using the generalised inverse of a singular matrix A to solve the matrix equation Ax = b has been discussed in the earlier papers [1, 2, 3, 4] in the Gazette. Here we discuss three simple geometric questions which are of interest in their own right, and which illustrate the use of the generalised inverse of a matrix. The three questions are about polygons and circles in the Euclidean plane. We need not assume that a polygon is a simple closed curve, nor that it is convex: indeed, abstractly, a polygon is just a finite sequence (v1, …, vn) of its distinct, consecutive, vertices. It is convenient to let vn + 1 = v1 and (later) Cn + 1 = C1.","PeriodicalId":22812,"journal":{"name":"The Mathematical Gazette","volume":"12 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Singular matrices and pairwise-tangent circles\",\"authors\":\"A. Beardon\",\"doi\":\"10.1017/mag.2024.3\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The idea of using the generalised inverse of a singular matrix A to solve the matrix equation Ax = b has been discussed in the earlier papers [1, 2, 3, 4] in the Gazette. Here we discuss three simple geometric questions which are of interest in their own right, and which illustrate the use of the generalised inverse of a matrix. The three questions are about polygons and circles in the Euclidean plane. We need not assume that a polygon is a simple closed curve, nor that it is convex: indeed, abstractly, a polygon is just a finite sequence (v1, …, vn) of its distinct, consecutive, vertices. It is convenient to let vn + 1 = v1 and (later) Cn + 1 = C1.\",\"PeriodicalId\":22812,\"journal\":{\"name\":\"The Mathematical Gazette\",\"volume\":\"12 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"The Mathematical Gazette\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1017/mag.2024.3\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"The Mathematical Gazette","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1017/mag.2024.3","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
The idea of using the generalised inverse of a singular matrix A to solve the matrix equation Ax = b has been discussed in the earlier papers [1, 2, 3, 4] in the Gazette. Here we discuss three simple geometric questions which are of interest in their own right, and which illustrate the use of the generalised inverse of a matrix. The three questions are about polygons and circles in the Euclidean plane. We need not assume that a polygon is a simple closed curve, nor that it is convex: indeed, abstractly, a polygon is just a finite sequence (v1, …, vn) of its distinct, consecutive, vertices. It is convenient to let vn + 1 = v1 and (later) Cn + 1 = C1.