Anisa Helena Isma Putri, Soen Steven, Fika Dwi Oktavia, Elvi Restiawaty, Indri Badria Adilina, Muhammad Safaat, Pandit Hernowo, Tirto Prakoso, Astri Nur Istyami, Meiti Pratiwi, Yazid Bindar
{"title":"热解琼脂工业的大型藻类残渣,生产富含二氧化硅的生物炭和其他可持续化学品:工艺性能、产品应用和简单商业方案","authors":"Anisa Helena Isma Putri, Soen Steven, Fika Dwi Oktavia, Elvi Restiawaty, Indri Badria Adilina, Muhammad Safaat, Pandit Hernowo, Tirto Prakoso, Astri Nur Istyami, Meiti Pratiwi, Yazid Bindar","doi":"10.1002/bbb.2597","DOIUrl":null,"url":null,"abstract":"<p>The macroalgae residue from the industrial agar extraction process contains a significant amount of carbon and has potential as a renewable feedstock. Unfortunately, it is often overlooked and is poorly utilized. This study aims to valorize this macroalgae residue through pyrolysis to produce silica-rich biochar and other value-added products in the form of biocrude oil (BCO) and biopyrolysis gas. The macroalgae residue was pyrolyzed at 300–700 °C with a heating rate of 20–40 °C/min. Yields of biochar, BCO, and gas of 62%, 25%, and 13% were obtained at a temperature of 700 °C and a heating rate of 20 °C/min. Biochar has a porous structure, a surface area exceeding 15 m<sup>2</sup>/g, and is dominated by amorphous silica of up to 13%. This silica-rich biochar also contains Na and K, which hold potential benefits in agriculture, serving as soil ameliorants and playing a crucial role in enhancing soil fertility and promoting plant growth. In the meantime, BCO contains 29.3% carboxylic acid group as the most important chemical component. Other than that, the biopyrolysis gas contains mainly CH<sub>4</sub> and H<sub>2</sub> (up to 24–32%), which can act as chemical building blocks. Finally, a simple business scenario of silica-rich biochar production reveals that it has a specific cost of 0.37 US$/kg. It could be economically viable as a soil ameliorant or fertilizer. However, challenges persist in scaling up production to an industrial scale.</p>","PeriodicalId":55380,"journal":{"name":"Biofuels Bioproducts & Biorefining-Biofpr","volume":"18 2","pages":"391-409"},"PeriodicalIF":3.2000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pyrolysis of macroalgae residue from the agar industry for silica-rich biochar and other sustainable chemicals: Process performances, product applications, and simple business scenario\",\"authors\":\"Anisa Helena Isma Putri, Soen Steven, Fika Dwi Oktavia, Elvi Restiawaty, Indri Badria Adilina, Muhammad Safaat, Pandit Hernowo, Tirto Prakoso, Astri Nur Istyami, Meiti Pratiwi, Yazid Bindar\",\"doi\":\"10.1002/bbb.2597\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<p>The macroalgae residue from the industrial agar extraction process contains a significant amount of carbon and has potential as a renewable feedstock. Unfortunately, it is often overlooked and is poorly utilized. This study aims to valorize this macroalgae residue through pyrolysis to produce silica-rich biochar and other value-added products in the form of biocrude oil (BCO) and biopyrolysis gas. The macroalgae residue was pyrolyzed at 300–700 °C with a heating rate of 20–40 °C/min. Yields of biochar, BCO, and gas of 62%, 25%, and 13% were obtained at a temperature of 700 °C and a heating rate of 20 °C/min. Biochar has a porous structure, a surface area exceeding 15 m<sup>2</sup>/g, and is dominated by amorphous silica of up to 13%. This silica-rich biochar also contains Na and K, which hold potential benefits in agriculture, serving as soil ameliorants and playing a crucial role in enhancing soil fertility and promoting plant growth. In the meantime, BCO contains 29.3% carboxylic acid group as the most important chemical component. Other than that, the biopyrolysis gas contains mainly CH<sub>4</sub> and H<sub>2</sub> (up to 24–32%), which can act as chemical building blocks. Finally, a simple business scenario of silica-rich biochar production reveals that it has a specific cost of 0.37 US$/kg. It could be economically viable as a soil ameliorant or fertilizer. However, challenges persist in scaling up production to an industrial scale.</p>\",\"PeriodicalId\":55380,\"journal\":{\"name\":\"Biofuels Bioproducts & Biorefining-Biofpr\",\"volume\":\"18 2\",\"pages\":\"391-409\"},\"PeriodicalIF\":3.2000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Biofuels Bioproducts & Biorefining-Biofpr\",\"FirstCategoryId\":\"5\",\"ListUrlMain\":\"https://onlinelibrary.wiley.com/doi/10.1002/bbb.2597\",\"RegionNum\":4,\"RegionCategory\":\"生物学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"BIOTECHNOLOGY & APPLIED MICROBIOLOGY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Biofuels Bioproducts & Biorefining-Biofpr","FirstCategoryId":"5","ListUrlMain":"https://onlinelibrary.wiley.com/doi/10.1002/bbb.2597","RegionNum":4,"RegionCategory":"生物学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"BIOTECHNOLOGY & APPLIED MICROBIOLOGY","Score":null,"Total":0}
Pyrolysis of macroalgae residue from the agar industry for silica-rich biochar and other sustainable chemicals: Process performances, product applications, and simple business scenario
The macroalgae residue from the industrial agar extraction process contains a significant amount of carbon and has potential as a renewable feedstock. Unfortunately, it is often overlooked and is poorly utilized. This study aims to valorize this macroalgae residue through pyrolysis to produce silica-rich biochar and other value-added products in the form of biocrude oil (BCO) and biopyrolysis gas. The macroalgae residue was pyrolyzed at 300–700 °C with a heating rate of 20–40 °C/min. Yields of biochar, BCO, and gas of 62%, 25%, and 13% were obtained at a temperature of 700 °C and a heating rate of 20 °C/min. Biochar has a porous structure, a surface area exceeding 15 m2/g, and is dominated by amorphous silica of up to 13%. This silica-rich biochar also contains Na and K, which hold potential benefits in agriculture, serving as soil ameliorants and playing a crucial role in enhancing soil fertility and promoting plant growth. In the meantime, BCO contains 29.3% carboxylic acid group as the most important chemical component. Other than that, the biopyrolysis gas contains mainly CH4 and H2 (up to 24–32%), which can act as chemical building blocks. Finally, a simple business scenario of silica-rich biochar production reveals that it has a specific cost of 0.37 US$/kg. It could be economically viable as a soil ameliorant or fertilizer. However, challenges persist in scaling up production to an industrial scale.
期刊介绍:
Biofuels, Bioproducts and Biorefining is a vital source of information on sustainable products, fuels and energy. Examining the spectrum of international scientific research and industrial development along the entire supply chain, The journal publishes a balanced mixture of peer-reviewed critical reviews, commentary, business news highlights, policy updates and patent intelligence. Biofuels, Bioproducts and Biorefining is dedicated to fostering growth in the biorenewables sector and serving its growing interdisciplinary community by providing a unique, systems-based insight into technologies in these fields as well as their industrial development.