使用纳米压痕和划痕测试方法研究有梗橡木(Quercus robur)年轮的结构和机械性能

A. Tyurin, Alexander Samodurov, D. Golovin, M. Yunak, Viktor Korenkov, Petr Baranchikov, Vladimir Tyurin, Natalia Kurkina
{"title":"使用纳米压痕和划痕测试方法研究有梗橡木(Quercus robur)年轮的结构和机械性能","authors":"A. Tyurin, Alexander Samodurov, D. Golovin, M. Yunak, Viktor Korenkov, Petr Baranchikov, Vladimir Tyurin, Natalia Kurkina","doi":"10.34220/issn.2222-7962/2023.4/2","DOIUrl":null,"url":null,"abstract":"Optical methods and optical properties are usually used to research the structure of wood and its ring structure. However, these properties are not directly related to its mechanical and other physical characteristics. To study them, methods of x-ray densitometry, synchrotron radiation, nuclear magnetic resonance, etc., which are not very common in wood science, are used. These methods are quite labor-intensive and require expensive equipment. In this regard, there is a need to develop simple and convenient means and methods for studying the micromechanical properties of wood. The main goal of the work is to develop such an approach using nanoindentation and digital scratching of a cross section of wood and to identify its potential in the further development of dendrochronology and related disciplines. Using the NI method, radial dependences of hardness H and Young's modulus E were obtained for eleven consecutive annual pedunculate oak (Quercus robur L.) wood rings for 3 different loads Pmax = 2, 100 and 500 mN. The values of H in the range from 70 to 340 MPa and Young's modulus E in the range from 2 to 10 GPa were determined for the corresponding loads and early (EW) and late wood (LW). Using the scratch test method, profiles of the normal force Fn and the corresponding hardness HS (in the range from 53 to 225 MPa) were obtained for the period 2007-2020. According to both methods, the widths of annual rings were determined; the discrepancy between the values and the optical method was < 3 %.","PeriodicalId":12425,"journal":{"name":"Forestry Engineering Journal","volume":"68 9","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-12","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Study of the structure and mechanical properties of annual rings of pedunculate oak (Quercus robur) using nanoindentation and scratch test methods\",\"authors\":\"A. Tyurin, Alexander Samodurov, D. Golovin, M. Yunak, Viktor Korenkov, Petr Baranchikov, Vladimir Tyurin, Natalia Kurkina\",\"doi\":\"10.34220/issn.2222-7962/2023.4/2\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Optical methods and optical properties are usually used to research the structure of wood and its ring structure. However, these properties are not directly related to its mechanical and other physical characteristics. To study them, methods of x-ray densitometry, synchrotron radiation, nuclear magnetic resonance, etc., which are not very common in wood science, are used. These methods are quite labor-intensive and require expensive equipment. In this regard, there is a need to develop simple and convenient means and methods for studying the micromechanical properties of wood. The main goal of the work is to develop such an approach using nanoindentation and digital scratching of a cross section of wood and to identify its potential in the further development of dendrochronology and related disciplines. Using the NI method, radial dependences of hardness H and Young's modulus E were obtained for eleven consecutive annual pedunculate oak (Quercus robur L.) wood rings for 3 different loads Pmax = 2, 100 and 500 mN. The values of H in the range from 70 to 340 MPa and Young's modulus E in the range from 2 to 10 GPa were determined for the corresponding loads and early (EW) and late wood (LW). Using the scratch test method, profiles of the normal force Fn and the corresponding hardness HS (in the range from 53 to 225 MPa) were obtained for the period 2007-2020. According to both methods, the widths of annual rings were determined; the discrepancy between the values and the optical method was < 3 %.\",\"PeriodicalId\":12425,\"journal\":{\"name\":\"Forestry Engineering Journal\",\"volume\":\"68 9\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-12\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Forestry Engineering Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.34220/issn.2222-7962/2023.4/2\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Forestry Engineering Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.34220/issn.2222-7962/2023.4/2","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

光学方法和光学特性通常用于研究木材的结构及其环状结构。然而,这些特性与其机械和其他物理特性并无直接关系。为了研究它们,需要使用 X 射线密度测量、同步辐射、核磁共振等方法,这些方法在木材科学中并不常见。这些方法相当耗费人力,而且需要昂贵的设备。因此,有必要开发简单方便的手段和方法来研究木材的微观机械特性。这项工作的主要目标是利用木材横截面的纳米压痕和数字划痕来开发这种方法,并确定其在进一步发展树木年代学和相关学科方面的潜力。利用纳米压痕法,获得了 11 个连续的有梗橡木(Quercus robur L.)年轮在 3 种不同载荷 Pmax = 2、100 和 500 mN 下的硬度 H 和杨氏模量 E 的径向相关性。针对相应的载荷、早期木材(EW)和晚期木材(LW),确定了 70 至 340 MPa 范围内的 H 值和 2 至 10 GPa 范围内的杨氏模量 E。使用划痕测试法,获得了 2007-2020 年间法向力 Fn 和相应硬度 HS(范围在 53 至 225 兆帕)的曲线。根据这两种方法,确定了年轮的宽度;数值与光学方法之间的差异小于 3%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Study of the structure and mechanical properties of annual rings of pedunculate oak (Quercus robur) using nanoindentation and scratch test methods
Optical methods and optical properties are usually used to research the structure of wood and its ring structure. However, these properties are not directly related to its mechanical and other physical characteristics. To study them, methods of x-ray densitometry, synchrotron radiation, nuclear magnetic resonance, etc., which are not very common in wood science, are used. These methods are quite labor-intensive and require expensive equipment. In this regard, there is a need to develop simple and convenient means and methods for studying the micromechanical properties of wood. The main goal of the work is to develop such an approach using nanoindentation and digital scratching of a cross section of wood and to identify its potential in the further development of dendrochronology and related disciplines. Using the NI method, radial dependences of hardness H and Young's modulus E were obtained for eleven consecutive annual pedunculate oak (Quercus robur L.) wood rings for 3 different loads Pmax = 2, 100 and 500 mN. The values of H in the range from 70 to 340 MPa and Young's modulus E in the range from 2 to 10 GPa were determined for the corresponding loads and early (EW) and late wood (LW). Using the scratch test method, profiles of the normal force Fn and the corresponding hardness HS (in the range from 53 to 225 MPa) were obtained for the period 2007-2020. According to both methods, the widths of annual rings were determined; the discrepancy between the values and the optical method was < 3 %.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Application of process-based modelling for interpretation of stable isotope variations in tree rings Structure of high elevation forests in Katunsky Range (the Altai Mountains) Miyake events: a review of the state-of-the-art The effect of volcanic eruptions on the radial growth of trees in the forests of the Mari El Republic Assessment of the impact of radiation contamination on radial growth of petiole oak in the Alekseevskoye lesnichestvo of Belgorod oblast
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1