基于线性矩的蒙特卡洛模拟用于未知概率分布的可靠性分析

Long-Wen Zhang, Yan-Gang Zhao
{"title":"基于线性矩的蒙特卡洛模拟用于未知概率分布的可靠性分析","authors":"Long-Wen Zhang, Yan-Gang Zhao","doi":"10.1115/1.4064702","DOIUrl":null,"url":null,"abstract":"\n Within the realm of structural reliability analysis, the uncertainties tied to resistance and loads are conventionally embodied as random variables possessing established cumulative distribution functions (CDFs). Nevertheless, real-world scenarios often involve cases where the CDFs of random variables are unknown, necessitating the probabilistic traits of these variables solely through statistical moments. In this study, for the purpose of integrating random variables characterized by an unknown CDF into the framework of Monte Carlo simulation (MCS), a linear moments (L-moments)-based method is proposed. The random variables marked by an unknown CDF are rendered as a straightforward function of a standard normal random variable, and the formulation of this function is determined by utilizing the L-moments, which are typically attainable from the statistical data of the random variables. By employing the proposed approach, the generation of random numbers associated with variables with unknown CDFs becomes a straightforward process, utilizing those derived from a standard normal random variable constructed by using Box-Muller transform. A selection of illustrative examples is presented, in which the efficacy of the technique is scrutinized. This examination reveals that despite its simplicity, the method demonstrates a level of precision that qualifies it for incorporating random variables characterized by unspecified CDFs within the framework of MCS for purposes of structural reliability analysis.","PeriodicalId":504755,"journal":{"name":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2024-02-09","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Linear Moments-based Monte Carlo Simulation for Reliability Analysis with Unknown Probability Distributions\",\"authors\":\"Long-Wen Zhang, Yan-Gang Zhao\",\"doi\":\"10.1115/1.4064702\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Within the realm of structural reliability analysis, the uncertainties tied to resistance and loads are conventionally embodied as random variables possessing established cumulative distribution functions (CDFs). Nevertheless, real-world scenarios often involve cases where the CDFs of random variables are unknown, necessitating the probabilistic traits of these variables solely through statistical moments. In this study, for the purpose of integrating random variables characterized by an unknown CDF into the framework of Monte Carlo simulation (MCS), a linear moments (L-moments)-based method is proposed. The random variables marked by an unknown CDF are rendered as a straightforward function of a standard normal random variable, and the formulation of this function is determined by utilizing the L-moments, which are typically attainable from the statistical data of the random variables. By employing the proposed approach, the generation of random numbers associated with variables with unknown CDFs becomes a straightforward process, utilizing those derived from a standard normal random variable constructed by using Box-Muller transform. A selection of illustrative examples is presented, in which the efficacy of the technique is scrutinized. This examination reveals that despite its simplicity, the method demonstrates a level of precision that qualifies it for incorporating random variables characterized by unspecified CDFs within the framework of MCS for purposes of structural reliability analysis.\",\"PeriodicalId\":504755,\"journal\":{\"name\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-09\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/1.4064702\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ASCE-ASME Journal of Risk and Uncertainty in Engineering Systems, Part B: Mechanical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/1.4064702","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在结构可靠性分析领域,与阻力和载荷相关的不确定性通常体现为具有既定累积分布函数(CDF)的随机变量。然而,现实世界中经常会出现随机变量的 CDF 未知的情况,这就需要仅通过统计矩来确定这些变量的概率特征。本研究提出了一种基于线性矩(L-moments)的方法,用于将具有未知 CDF 特征的随机变量纳入蒙特卡罗模拟(MCS)框架。以未知 CDF 为特征的随机变量被视为标准正态随机变量的直接函数,而该函数的表述则通过利用线性矩来确定,线性矩通常可从随机变量的统计数据中获得。通过采用所提出的方法,利用从使用 Box-Muller 变换构建的标准正态随机变量中导出的函数,与未知 CDF 变量相关的随机数的生成就变得简单易行。本文选取了一些示例,对该技术的功效进行了仔细研究。研究结果表明,尽管该方法简单易行,但其精确度足以将具有未指定 CDF 的随机变量纳入 MCS 框架,用于结构可靠性分析。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Linear Moments-based Monte Carlo Simulation for Reliability Analysis with Unknown Probability Distributions
Within the realm of structural reliability analysis, the uncertainties tied to resistance and loads are conventionally embodied as random variables possessing established cumulative distribution functions (CDFs). Nevertheless, real-world scenarios often involve cases where the CDFs of random variables are unknown, necessitating the probabilistic traits of these variables solely through statistical moments. In this study, for the purpose of integrating random variables characterized by an unknown CDF into the framework of Monte Carlo simulation (MCS), a linear moments (L-moments)-based method is proposed. The random variables marked by an unknown CDF are rendered as a straightforward function of a standard normal random variable, and the formulation of this function is determined by utilizing the L-moments, which are typically attainable from the statistical data of the random variables. By employing the proposed approach, the generation of random numbers associated with variables with unknown CDFs becomes a straightforward process, utilizing those derived from a standard normal random variable constructed by using Box-Muller transform. A selection of illustrative examples is presented, in which the efficacy of the technique is scrutinized. This examination reveals that despite its simplicity, the method demonstrates a level of precision that qualifies it for incorporating random variables characterized by unspecified CDFs within the framework of MCS for purposes of structural reliability analysis.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Uncertainty-Aware, Structure-Preserving Machine Learning Approach for Domain Shift Detection From Nonlinear Dynamic Responses of Structural Systems Random Dynamic Responses of Two Parallel Interfacial Cracks Between A Functionally Graded Material Strip And Two Dissimilar Elastic Strips Bayesian Model Updating of Multiscale Simulations Informing Corrosion Prognostics Using Conditional Invertible Neural Networks Deep Learning-Based Multi-Fidelity Surrogate Modeling for High Dimensional Reliability Prediction Special Issue on Probabilistic Digital Twins in Additive Manufacturing
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1