机器学习中财务报表整合对股价预测的影响

F. W. Christanto, Victor Gayuh Utomo, Rastri Prathivi, Christine Dewi
{"title":"机器学习中财务报表整合对股价预测的影响","authors":"F. W. Christanto, Victor Gayuh Utomo, Rastri Prathivi, Christine Dewi","doi":"10.5815/ijitcs.2024.01.04","DOIUrl":null,"url":null,"abstract":"In the capital market, there are two methods used by investors to make stock price predictions, namely fundamental analysis, and technical analysis. In computer science, it is possible to make prediction, including stock price prediction, use Machine Learning (ML). While there is research result that said both fundamental and technical parameter should give an optimum prediction there is lack of confirmation in Machine Learning to this result. This research conducts experiment using Support Vector Regression (SVR) and Support Vector Machine (SVM) as ML method to predict stock price. Further, the result is compared between 3 groups of parameters, technical only (TEC), financial statement only (FIN) and combination of both (COM). Our experimental results show that integrating financial statements has a neutral impact on SVR predictions but a positive impact on SVM predictions and the accuracy value of the model in this research reached 83%.","PeriodicalId":130361,"journal":{"name":"International Journal of Information Technology and Computer Science","volume":"139 5","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-08","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"The Impact of Financial Statement Integration in Machine Learning for Stock Price Prediction\",\"authors\":\"F. W. Christanto, Victor Gayuh Utomo, Rastri Prathivi, Christine Dewi\",\"doi\":\"10.5815/ijitcs.2024.01.04\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the capital market, there are two methods used by investors to make stock price predictions, namely fundamental analysis, and technical analysis. In computer science, it is possible to make prediction, including stock price prediction, use Machine Learning (ML). While there is research result that said both fundamental and technical parameter should give an optimum prediction there is lack of confirmation in Machine Learning to this result. This research conducts experiment using Support Vector Regression (SVR) and Support Vector Machine (SVM) as ML method to predict stock price. Further, the result is compared between 3 groups of parameters, technical only (TEC), financial statement only (FIN) and combination of both (COM). Our experimental results show that integrating financial statements has a neutral impact on SVR predictions but a positive impact on SVM predictions and the accuracy value of the model in this research reached 83%.\",\"PeriodicalId\":130361,\"journal\":{\"name\":\"International Journal of Information Technology and Computer Science\",\"volume\":\"139 5\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-08\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International Journal of Information Technology and Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.5815/ijitcs.2024.01.04\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International Journal of Information Technology and Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.5815/ijitcs.2024.01.04","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在资本市场上,投资者使用两种方法进行股价预测,即基本面分析和技术分析。在计算机科学领域,可以利用机器学习(ML)进行预测,包括股价预测。虽然有研究结果表明,基本面参数和技术参数都能给出最佳预测结果,但机器学习领域还没有证实这一结果。本研究使用支持向量回归(SVR)和支持向量机(SVM)作为预测股价的 ML 方法进行实验。此外,还比较了三组参数的结果,即仅技术参数 (TEC)、仅财务报表 (FIN) 和两者的组合 (COM)。实验结果表明,整合财务报表对 SVR 预测的影响是中性的,但对 SVM 预测的影响是积极的,本研究中模型的准确率达到 83%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
The Impact of Financial Statement Integration in Machine Learning for Stock Price Prediction
In the capital market, there are two methods used by investors to make stock price predictions, namely fundamental analysis, and technical analysis. In computer science, it is possible to make prediction, including stock price prediction, use Machine Learning (ML). While there is research result that said both fundamental and technical parameter should give an optimum prediction there is lack of confirmation in Machine Learning to this result. This research conducts experiment using Support Vector Regression (SVR) and Support Vector Machine (SVM) as ML method to predict stock price. Further, the result is compared between 3 groups of parameters, technical only (TEC), financial statement only (FIN) and combination of both (COM). Our experimental results show that integrating financial statements has a neutral impact on SVR predictions but a positive impact on SVM predictions and the accuracy value of the model in this research reached 83%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enhancing Healthcare Provision in Conflict Zones: Queuing System Models for Mobile and Flexible Medical Care Units with a Limited Number of Treatment Stations A Machine Learning Based Intelligent Diabetic and Hypertensive Patient Prediction Scheme and A Mobile Application for Patients Assistance Mimicking Nature: Analysis of Dragonfly Pursuit Strategies Using LSTM and Kalman Filter Securing the Internet of Things: Evaluating Machine Learning Algorithms for Detecting IoT Cyberattacks Using CIC-IoT2023 Dataset Analyzing Test Performance of BSIT Students and Question Quality: A Study on Item Difficulty Index and Item Discrimination Index for Test Question Improvement
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1