Tasnia Ahmed, A. Bediwy, Ahmed Azzam, R. Elhadary, E. El-Salakawy, M. Bassuoni
{"title":"从微观到宏观、从基础到应用领域利用新型玄武岩纤维颗粒:最新成果综述","authors":"Tasnia Ahmed, A. Bediwy, Ahmed Azzam, R. Elhadary, E. El-Salakawy, M. Bassuoni","doi":"10.3390/fib12020017","DOIUrl":null,"url":null,"abstract":"Fiber-reinforced cementitious composites (FRCC) are one of the leading engineering materials in the 21st century, as they offer proficiency in enhancing strength, ductility, and durability in structural engineering applications. Because the recently developed basalt fiber pellets (BFP) offer combined strands of fibers encased in a polymer matrix, they are being prevalently studied to explore new possibilities when used in brittle materials such as mortar and concrete. Hence, this paper synthesizes the intensive research efforts and contributions to this novel class of fibers conducted by the authors. Specifically, it reviews the fresh, mechanical, and durability properties of FRCC incorporating single BFP or hybrid with polyvinyl alcohol fibers and modified with slag/fly ash and nano-materials and its suitability for different field applications. In addition, the nano- and meso-scale modeling of such matrices are described. BFP significantly contributes to improving post-cracking flexural behavior by toughening the cementitious matrix and minimizing strength losses when exposed to harsh environments. All results show promising progress in the development of high-performance FRCC comprising BFP, with potential success for structural and pavement applications.","PeriodicalId":12122,"journal":{"name":"Fibers","volume":null,"pages":null},"PeriodicalIF":4.0000,"publicationDate":"2024-02-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Utilization of Novel Basalt Fiber Pellets from Micro- to Macro-Scale, and from Basic to Applied Fields: A Review on Recent Contributions\",\"authors\":\"Tasnia Ahmed, A. Bediwy, Ahmed Azzam, R. Elhadary, E. El-Salakawy, M. Bassuoni\",\"doi\":\"10.3390/fib12020017\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fiber-reinforced cementitious composites (FRCC) are one of the leading engineering materials in the 21st century, as they offer proficiency in enhancing strength, ductility, and durability in structural engineering applications. Because the recently developed basalt fiber pellets (BFP) offer combined strands of fibers encased in a polymer matrix, they are being prevalently studied to explore new possibilities when used in brittle materials such as mortar and concrete. Hence, this paper synthesizes the intensive research efforts and contributions to this novel class of fibers conducted by the authors. Specifically, it reviews the fresh, mechanical, and durability properties of FRCC incorporating single BFP or hybrid with polyvinyl alcohol fibers and modified with slag/fly ash and nano-materials and its suitability for different field applications. In addition, the nano- and meso-scale modeling of such matrices are described. BFP significantly contributes to improving post-cracking flexural behavior by toughening the cementitious matrix and minimizing strength losses when exposed to harsh environments. All results show promising progress in the development of high-performance FRCC comprising BFP, with potential success for structural and pavement applications.\",\"PeriodicalId\":12122,\"journal\":{\"name\":\"Fibers\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":4.0000,\"publicationDate\":\"2024-02-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Fibers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3390/fib12020017\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q2\",\"JCRName\":\"MATERIALS SCIENCE, MULTIDISCIPLINARY\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Fibers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3390/fib12020017","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q2","JCRName":"MATERIALS SCIENCE, MULTIDISCIPLINARY","Score":null,"Total":0}
Utilization of Novel Basalt Fiber Pellets from Micro- to Macro-Scale, and from Basic to Applied Fields: A Review on Recent Contributions
Fiber-reinforced cementitious composites (FRCC) are one of the leading engineering materials in the 21st century, as they offer proficiency in enhancing strength, ductility, and durability in structural engineering applications. Because the recently developed basalt fiber pellets (BFP) offer combined strands of fibers encased in a polymer matrix, they are being prevalently studied to explore new possibilities when used in brittle materials such as mortar and concrete. Hence, this paper synthesizes the intensive research efforts and contributions to this novel class of fibers conducted by the authors. Specifically, it reviews the fresh, mechanical, and durability properties of FRCC incorporating single BFP or hybrid with polyvinyl alcohol fibers and modified with slag/fly ash and nano-materials and its suitability for different field applications. In addition, the nano- and meso-scale modeling of such matrices are described. BFP significantly contributes to improving post-cracking flexural behavior by toughening the cementitious matrix and minimizing strength losses when exposed to harsh environments. All results show promising progress in the development of high-performance FRCC comprising BFP, with potential success for structural and pavement applications.
FibersEngineering-Civil and Structural Engineering
CiteScore
7.00
自引率
7.70%
发文量
92
审稿时长
11 weeks
期刊介绍:
Fibers (ISSN 2079-6439) is a peer-reviewed scientific journal that publishes original articles, critical reviews, research notes and short communications on the materials science and all other empirical and theoretical studies of fibers, providing a forum for integrating fiber research across many disciplines. Our aim is to encourage scientists to publish their experimental and theoretical results in as much detail as possible. There is no restriction on the length of the papers. The full experimental details must be provided so that the results can be reproduced. Electronic files or software regarding the full details of the calculation and experimental procedure, if unable to be published in a normal way, can be deposited as supplementary material. The following topics are relevant and within the scope of this journal: -textile fibers -natural fibers and biological microfibrils -metallic fibers -optic fibers -carbon fibers -silicon carbide fibers -fiberglass -mineral fibers -cellulose fibers -polymer fibers -microfibers, nanofibers and nanotubes -new processing methods for fibers -chemistry of fiber materials -physical properties of fibers -exposure to and toxicology of fibers -biokinetics of fibers -the diversity of fiber origins