非常规油井气举过程中的井底流动压力

SPE Journal Pub Date : 2024-02-01 DOI:10.2118/214832-pa
Miao Jin, Hamid Emami‐Meybodi, Mohammad Ahmadi
{"title":"非常规油井气举过程中的井底流动压力","authors":"Miao Jin, Hamid Emami‐Meybodi, Mohammad Ahmadi","doi":"10.2118/214832-pa","DOIUrl":null,"url":null,"abstract":"\n We present artificial neural network (ANN) models for predicting the flowing bottomhole pressure (FBHP) of unconventional oil wells under gas lift operations. Well parameters, fluid properties, production/injection data, and bottomhole gauge pressures from 16 shale oil wells in Permian Basin, Texas, USA, are analyzed to determine key parameters affecting FBHP during the gas lift operation. For the reservoir fluid properties, several pressure-volume-temperature (PVT) models, such as Benedict-Webb-Rubin (BWR); Lee, Gonzalez, and Eakin; and Standing, among others, are examined against experimentally tuned fluid properties (i.e., viscosity, formation volume factor, and solution gas-oil ratio) to identify representative fluid (PVT) models for oil and gas properties. Pipe flow models (i.e., Hagedorn and Brown; Gray, Begs and Brill; and Petalas and Aziz) are also examined by comparing calculated FBHP against the bottomhole gauge pressures to identify a representative pipe flow model. Training and test data sets are then generated using the representative PVT and pipe flow models to develop a physics-based ANN model. The physics-based ANN model inputs are hydrocarbon fluid properties, liquid flow rate (qL), gas-liquid ratio (GLR), water-oil ratio (WOR), well true vertical depth (TVD), wellhead pressure (Pwh), wellhead temperature (Twh), and temperature gradient (dT/dh). A data-based ANN model is also developed based on only TVD, Pwh, qL, GLR, and WOR. Both physics- and data-based ANN models are trained through hyperparameter optimization using genetic algorithm and K-fold validation and then tested against the gauge FBHP. The results reveal that both models perform well with the FBHP prediction from field data with a normalized mean absolute error (NMAE) of around 10%. However, a comparison between results from the physics- and data-based ANN models shows that the accuracy of the physics-based model is higher at the later phase of the gas lift operation when the steady-state pipe flow is well established. On the contrary, the data-based model performs better for the early phase of gas lift operation when transient flow behavior is dominant. Developed ANN models and workflows can be applied to optimize gas lift operations under different fluid and well conditions.","PeriodicalId":510854,"journal":{"name":"SPE Journal","volume":"5 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Flowing Bottomhole Pressure during Gas Lift in Unconventional Oil Wells\",\"authors\":\"Miao Jin, Hamid Emami‐Meybodi, Mohammad Ahmadi\",\"doi\":\"10.2118/214832-pa\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n We present artificial neural network (ANN) models for predicting the flowing bottomhole pressure (FBHP) of unconventional oil wells under gas lift operations. Well parameters, fluid properties, production/injection data, and bottomhole gauge pressures from 16 shale oil wells in Permian Basin, Texas, USA, are analyzed to determine key parameters affecting FBHP during the gas lift operation. For the reservoir fluid properties, several pressure-volume-temperature (PVT) models, such as Benedict-Webb-Rubin (BWR); Lee, Gonzalez, and Eakin; and Standing, among others, are examined against experimentally tuned fluid properties (i.e., viscosity, formation volume factor, and solution gas-oil ratio) to identify representative fluid (PVT) models for oil and gas properties. Pipe flow models (i.e., Hagedorn and Brown; Gray, Begs and Brill; and Petalas and Aziz) are also examined by comparing calculated FBHP against the bottomhole gauge pressures to identify a representative pipe flow model. Training and test data sets are then generated using the representative PVT and pipe flow models to develop a physics-based ANN model. The physics-based ANN model inputs are hydrocarbon fluid properties, liquid flow rate (qL), gas-liquid ratio (GLR), water-oil ratio (WOR), well true vertical depth (TVD), wellhead pressure (Pwh), wellhead temperature (Twh), and temperature gradient (dT/dh). A data-based ANN model is also developed based on only TVD, Pwh, qL, GLR, and WOR. Both physics- and data-based ANN models are trained through hyperparameter optimization using genetic algorithm and K-fold validation and then tested against the gauge FBHP. The results reveal that both models perform well with the FBHP prediction from field data with a normalized mean absolute error (NMAE) of around 10%. However, a comparison between results from the physics- and data-based ANN models shows that the accuracy of the physics-based model is higher at the later phase of the gas lift operation when the steady-state pipe flow is well established. On the contrary, the data-based model performs better for the early phase of gas lift operation when transient flow behavior is dominant. Developed ANN models and workflows can be applied to optimize gas lift operations under different fluid and well conditions.\",\"PeriodicalId\":510854,\"journal\":{\"name\":\"SPE Journal\",\"volume\":\"5 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPE Journal\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2118/214832-pa\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPE Journal","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2118/214832-pa","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们提出了人工神经网络 (ANN) 模型,用于预测气举作业下非常规油井的流动井底压力 (FBHP)。我们分析了美国德克萨斯州二叠纪盆地 16 口页岩油井的油井参数、流体性质、生产/注入数据以及井底表压,以确定气举作业期间影响井底压力的关键参数。在储层流体属性方面,针对实验调整的流体属性(即粘度、地层体积因子和溶液气油比),研究了几种压力-体积-温度(PVT)模型,如 Benedict-Webb-Rubin (BWR)、Lee、Gonzalez 和 Eakin 以及 Standing 等,以确定油气属性的代表性流体(PVT)模型。还通过将计算的 FBHP 与井底表压进行比较来确定具有代表性的管流模型(即 Hagedorn 和 Brown;Gray、Begs 和 Brill;以及 Petalas 和 Aziz)。然后使用具有代表性的 PVT 和管流模型生成训练和测试数据集,以开发基于物理的 ANN 模型。基于物理的 ANN 模型输入包括碳氢化合物流体特性、液体流速 (qL)、气液比 (GLR)、水油比 (WOR)、油井实际垂直深度 (TVD)、井口压力 (Pwh)、井口温度 (Twh) 和温度梯度 (dT/dh)。此外,还开发了一个基于数据的 ANN 模型,该模型仅基于 TVD、Pwh、qL、GLR 和 WOR。使用遗传算法和 K-fold 验证,通过超参数优化对物理和数据 ANN 模型进行训练,然后根据仪器 FBHP 进行测试。结果表明,这两种模型都能很好地预测来自现场数据的 FBHP,归一化平均绝对误差 (NMAE) 约为 10%。然而,对基于物理的 ANN 模型和基于数据的 ANN 模型的结果进行比较后发现,基于物理的模型在气举运行的后期阶段,即稳态管道流量建立良好的阶段精度更高。相反,当瞬态流动行为占主导地位时,基于数据的模型在气举运行的早期阶段表现更好。开发的 ANN 模型和工作流程可用于优化不同流体和油井条件下的气举作业。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Flowing Bottomhole Pressure during Gas Lift in Unconventional Oil Wells
We present artificial neural network (ANN) models for predicting the flowing bottomhole pressure (FBHP) of unconventional oil wells under gas lift operations. Well parameters, fluid properties, production/injection data, and bottomhole gauge pressures from 16 shale oil wells in Permian Basin, Texas, USA, are analyzed to determine key parameters affecting FBHP during the gas lift operation. For the reservoir fluid properties, several pressure-volume-temperature (PVT) models, such as Benedict-Webb-Rubin (BWR); Lee, Gonzalez, and Eakin; and Standing, among others, are examined against experimentally tuned fluid properties (i.e., viscosity, formation volume factor, and solution gas-oil ratio) to identify representative fluid (PVT) models for oil and gas properties. Pipe flow models (i.e., Hagedorn and Brown; Gray, Begs and Brill; and Petalas and Aziz) are also examined by comparing calculated FBHP against the bottomhole gauge pressures to identify a representative pipe flow model. Training and test data sets are then generated using the representative PVT and pipe flow models to develop a physics-based ANN model. The physics-based ANN model inputs are hydrocarbon fluid properties, liquid flow rate (qL), gas-liquid ratio (GLR), water-oil ratio (WOR), well true vertical depth (TVD), wellhead pressure (Pwh), wellhead temperature (Twh), and temperature gradient (dT/dh). A data-based ANN model is also developed based on only TVD, Pwh, qL, GLR, and WOR. Both physics- and data-based ANN models are trained through hyperparameter optimization using genetic algorithm and K-fold validation and then tested against the gauge FBHP. The results reveal that both models perform well with the FBHP prediction from field data with a normalized mean absolute error (NMAE) of around 10%. However, a comparison between results from the physics- and data-based ANN models shows that the accuracy of the physics-based model is higher at the later phase of the gas lift operation when the steady-state pipe flow is well established. On the contrary, the data-based model performs better for the early phase of gas lift operation when transient flow behavior is dominant. Developed ANN models and workflows can be applied to optimize gas lift operations under different fluid and well conditions.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Rock-Breaking Characteristics of Three-Ribbed Ridge Nonplanar Polycrystalline Diamond Compact Cutter and Its Application in Plastic Formations A Two-Phase Flowback Type Curve with Fracture Damage Effects for Hydraulically Fractured Reservoirs Diffusive Leakage of scCO2 in Shaly Caprocks: Effect of Geochemical Reactivity and Anisotropy The Early Determination Method of Reservoir Drive of Oil Deposits Based on Jamalbayli Indexes Coupled Simulation of Fracture Propagation and Lagrangian Proppant Transport
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1