生成式人工智能:使用主题建模技术的系统综述

Priyanka Gupta , Bosheng Ding , Chong Guan , Ding Ding
{"title":"生成式人工智能:使用主题建模技术的系统综述","authors":"Priyanka Gupta ,&nbsp;Bosheng Ding ,&nbsp;Chong Guan ,&nbsp;Ding Ding","doi":"10.1016/j.dim.2024.100066","DOIUrl":null,"url":null,"abstract":"<div><p>Generative artificial intelligence (GAI) is a rapidly growing field with a wide range of applications. In this paper, a thorough examination of the research landscape in GAI is presented, encompassing a comprehensive overview of the prevailing themes and topics within the field. The study analyzes a corpus of 1319 records from Scopus spanning from 1985 to 2023 and comprises journal articles, books, book chapters, conference papers, and selected working papers.</p><p>The analysis revealed seven distinct clusters of topics in GAI research: image processing and content analysis, content generation, emerging use cases, engineering, cognitive inference and planning, data privacy and security, and Generative Pre-Trained Transformer (GPT) academic applications. The paper discusses the findings of the analysis and identifies some of the key challenges and opportunities in GAI research.</p><p>The paper concludes by calling for further research in GAI, particularly in the areas of explainability, robustness, cross-modal and multi-modal generation, and interactive co-creation. The paper also highlights the importance of addressing the challenges of data privacy and security in GAI and responsible use of GAI.</p></div>","PeriodicalId":72769,"journal":{"name":"Data and information management","volume":"8 2","pages":"Article 100066"},"PeriodicalIF":0.0000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S2543925124000020/pdfft?md5=dbdf97fdc7e10603e5fe8ff706294d18&pid=1-s2.0-S2543925124000020-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Generative AI: A systematic review using topic modelling techniques\",\"authors\":\"Priyanka Gupta ,&nbsp;Bosheng Ding ,&nbsp;Chong Guan ,&nbsp;Ding Ding\",\"doi\":\"10.1016/j.dim.2024.100066\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Generative artificial intelligence (GAI) is a rapidly growing field with a wide range of applications. In this paper, a thorough examination of the research landscape in GAI is presented, encompassing a comprehensive overview of the prevailing themes and topics within the field. The study analyzes a corpus of 1319 records from Scopus spanning from 1985 to 2023 and comprises journal articles, books, book chapters, conference papers, and selected working papers.</p><p>The analysis revealed seven distinct clusters of topics in GAI research: image processing and content analysis, content generation, emerging use cases, engineering, cognitive inference and planning, data privacy and security, and Generative Pre-Trained Transformer (GPT) academic applications. The paper discusses the findings of the analysis and identifies some of the key challenges and opportunities in GAI research.</p><p>The paper concludes by calling for further research in GAI, particularly in the areas of explainability, robustness, cross-modal and multi-modal generation, and interactive co-creation. The paper also highlights the importance of addressing the challenges of data privacy and security in GAI and responsible use of GAI.</p></div>\",\"PeriodicalId\":72769,\"journal\":{\"name\":\"Data and information management\",\"volume\":\"8 2\",\"pages\":\"Article 100066\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S2543925124000020/pdfft?md5=dbdf97fdc7e10603e5fe8ff706294d18&pid=1-s2.0-S2543925124000020-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Data and information management\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S2543925124000020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Data and information management","FirstCategoryId":"1085","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S2543925124000020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

生成人工智能(GAI)是一个发展迅速、应用广泛的领域。本文对 GAI 的研究现状进行了深入研究,全面概述了该领域的流行主题和话题。研究分析了 Scopus 中从 1985 年到 2023 年 1319 条记录的语料库,其中包括期刊论文、书籍、书籍章节、会议论文和部分工作论文。分析揭示了 GAI 研究中七个不同的主题集群:图像处理和内容分析、内容生成、新兴用例、工程、认知推理和规划、数据隐私和安全以及生成预训练变换器 (GPT) 学术应用。论文讨论了分析结果,并指出了 GAI 研究中的一些关键挑战和机遇。论文最后呼吁进一步开展 GAI 研究,特别是在可解释性、稳健性、跨模态和多模态生成以及交互式共同创造等领域。本文还强调了解决 GAI 中数据隐私和安全挑战以及负责任地使用 GAI 的重要性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Generative AI: A systematic review using topic modelling techniques

Generative artificial intelligence (GAI) is a rapidly growing field with a wide range of applications. In this paper, a thorough examination of the research landscape in GAI is presented, encompassing a comprehensive overview of the prevailing themes and topics within the field. The study analyzes a corpus of 1319 records from Scopus spanning from 1985 to 2023 and comprises journal articles, books, book chapters, conference papers, and selected working papers.

The analysis revealed seven distinct clusters of topics in GAI research: image processing and content analysis, content generation, emerging use cases, engineering, cognitive inference and planning, data privacy and security, and Generative Pre-Trained Transformer (GPT) academic applications. The paper discusses the findings of the analysis and identifies some of the key challenges and opportunities in GAI research.

The paper concludes by calling for further research in GAI, particularly in the areas of explainability, robustness, cross-modal and multi-modal generation, and interactive co-creation. The paper also highlights the importance of addressing the challenges of data privacy and security in GAI and responsible use of GAI.

求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Data and information management
Data and information management Management Information Systems, Library and Information Sciences
CiteScore
3.70
自引率
0.00%
发文量
0
审稿时长
55 days
期刊最新文献
Erratum regarding missing Declaration of Competing Interest statements in previously published articles (Volume 6, Issues 1–4) Improved detection of transient events in wide area sky survey using convolutional neural networks An evaluation method of academic output that considers productivity differences Adaptive K-means clustering based under-sampling methods to solve the class imbalance problem Does internet use affect public risk perception? — From the perspective of political participation
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1