Zuzana Košelová, Lenka Horáková, D. Burda, Mohammad M. Allaham, A. Knápek, Z. Fohlerova
{"title":"清洗钨针尖,以便随后用作冷场发射器或 STM 探针","authors":"Zuzana Košelová, Lenka Horáková, D. Burda, Mohammad M. Allaham, A. Knápek, Z. Fohlerova","doi":"10.2478/jee-2024-0006","DOIUrl":null,"url":null,"abstract":"\n This study investigates the crucial process of cleaning cold field emission electron emitters and scanning tunnel microscopy (STM) probes, particularly focusing on tungsten tips. The cleanliness of these tips is essential for maintaining optimal cathode properties, preventing impurities that can significantly affect the emission process. Various cleaning methods, including macroetching, ammonia cleaning, and hydrofluoric acid (HF) cleaning were explored and compared by scanning electron microscopy. The macroetching method, involving a mixture of hydrochloric acid, nitric acid, and hydrogen fluoride, proved to be too reactive, causing significant material removal and altering the tip’s structure. Ammonia cleaning did not significantly improve or harm the samples. However, oxide islands appeared in some areas, suggesting the potential formation of ammonium tungsten oxide. HF cleaning, specifically at 20% and 50% concentrations, demonstrated effectiveness in removing tungsten oxides without damaging the tip. Pre-cleaning with water and ethanol proved beneficial for subsequent HF refinement. Results suggest that HF is the most suitable method for oxide removal but a rinse with water is essential for removing residual sodium hydroxide. To maintain optimal properties, it is crucial to apply a less reactive layer quickly or transfer the tips to a water/ethanol bath to prevent oxidation.","PeriodicalId":508697,"journal":{"name":"Journal of Electrical Engineering","volume":"19 6","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Cleaning of tungsten tips for subsequent use as cold field emitters or STM probes\",\"authors\":\"Zuzana Košelová, Lenka Horáková, D. Burda, Mohammad M. Allaham, A. Knápek, Z. Fohlerova\",\"doi\":\"10.2478/jee-2024-0006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n This study investigates the crucial process of cleaning cold field emission electron emitters and scanning tunnel microscopy (STM) probes, particularly focusing on tungsten tips. The cleanliness of these tips is essential for maintaining optimal cathode properties, preventing impurities that can significantly affect the emission process. Various cleaning methods, including macroetching, ammonia cleaning, and hydrofluoric acid (HF) cleaning were explored and compared by scanning electron microscopy. The macroetching method, involving a mixture of hydrochloric acid, nitric acid, and hydrogen fluoride, proved to be too reactive, causing significant material removal and altering the tip’s structure. Ammonia cleaning did not significantly improve or harm the samples. However, oxide islands appeared in some areas, suggesting the potential formation of ammonium tungsten oxide. HF cleaning, specifically at 20% and 50% concentrations, demonstrated effectiveness in removing tungsten oxides without damaging the tip. Pre-cleaning with water and ethanol proved beneficial for subsequent HF refinement. Results suggest that HF is the most suitable method for oxide removal but a rinse with water is essential for removing residual sodium hydroxide. To maintain optimal properties, it is crucial to apply a less reactive layer quickly or transfer the tips to a water/ethanol bath to prevent oxidation.\",\"PeriodicalId\":508697,\"journal\":{\"name\":\"Journal of Electrical Engineering\",\"volume\":\"19 6\",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Electrical Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2478/jee-2024-0006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Electrical Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2478/jee-2024-0006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Cleaning of tungsten tips for subsequent use as cold field emitters or STM probes
This study investigates the crucial process of cleaning cold field emission electron emitters and scanning tunnel microscopy (STM) probes, particularly focusing on tungsten tips. The cleanliness of these tips is essential for maintaining optimal cathode properties, preventing impurities that can significantly affect the emission process. Various cleaning methods, including macroetching, ammonia cleaning, and hydrofluoric acid (HF) cleaning were explored and compared by scanning electron microscopy. The macroetching method, involving a mixture of hydrochloric acid, nitric acid, and hydrogen fluoride, proved to be too reactive, causing significant material removal and altering the tip’s structure. Ammonia cleaning did not significantly improve or harm the samples. However, oxide islands appeared in some areas, suggesting the potential formation of ammonium tungsten oxide. HF cleaning, specifically at 20% and 50% concentrations, demonstrated effectiveness in removing tungsten oxides without damaging the tip. Pre-cleaning with water and ethanol proved beneficial for subsequent HF refinement. Results suggest that HF is the most suitable method for oxide removal but a rinse with water is essential for removing residual sodium hydroxide. To maintain optimal properties, it is crucial to apply a less reactive layer quickly or transfer the tips to a water/ethanol bath to prevent oxidation.