{"title":"丛枝菌根真菌促进土壤健康的潜力","authors":"Junling ZHANG , Ruotong ZHAO , Xia LI , Jiangzhou ZHANG","doi":"10.1016/j.pedsph.2024.02.002","DOIUrl":null,"url":null,"abstract":"<div><p>Soil health is an important component of “One Health”. Soils provide habitat to diverse and abundant organisms. Understanding microbial diversity and functions is essential for building healthy soils towards sustainable agriculture. Arbuscular mycorrhizal fungi (AMF) form potentially symbiotic associations with approximately 80% of land plant species that are well recognized for carbon flux and nutrient cycling. In addition to disentangling the signaling pathways and regulatory mechanisms between the two partners, recent advances in hyphosphere research highlight some emerging roles of AMF and associated microbes in the delivery of soil functions. This paper reviews the contribution of AMF to soil health in agroecosystems, with a major focus on recent progress in the contribution of hyphosphere microbiome to nutrient cycling, carbon sequestration, and soil aggregation. The hyphosphere microbiome and fungal stimulants open avenues for developing new fertilizer formulas to promote AMF benefits. In practice, developing AMF-friendly management strategies will have long-term positive effects on sustainable agriculture aiming at simultaneously providing food security, increasing resource use efficiency, and maintaining environment integrity.</p></div>","PeriodicalId":49709,"journal":{"name":"Pedosphere","volume":"34 2","pages":"Pages 279-288"},"PeriodicalIF":5.2000,"publicationDate":"2024-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Potential of arbuscular mycorrhizal fungi for soil health: A review\",\"authors\":\"Junling ZHANG , Ruotong ZHAO , Xia LI , Jiangzhou ZHANG\",\"doi\":\"10.1016/j.pedsph.2024.02.002\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Soil health is an important component of “One Health”. Soils provide habitat to diverse and abundant organisms. Understanding microbial diversity and functions is essential for building healthy soils towards sustainable agriculture. Arbuscular mycorrhizal fungi (AMF) form potentially symbiotic associations with approximately 80% of land plant species that are well recognized for carbon flux and nutrient cycling. In addition to disentangling the signaling pathways and regulatory mechanisms between the two partners, recent advances in hyphosphere research highlight some emerging roles of AMF and associated microbes in the delivery of soil functions. This paper reviews the contribution of AMF to soil health in agroecosystems, with a major focus on recent progress in the contribution of hyphosphere microbiome to nutrient cycling, carbon sequestration, and soil aggregation. The hyphosphere microbiome and fungal stimulants open avenues for developing new fertilizer formulas to promote AMF benefits. In practice, developing AMF-friendly management strategies will have long-term positive effects on sustainable agriculture aiming at simultaneously providing food security, increasing resource use efficiency, and maintaining environment integrity.</p></div>\",\"PeriodicalId\":49709,\"journal\":{\"name\":\"Pedosphere\",\"volume\":\"34 2\",\"pages\":\"Pages 279-288\"},\"PeriodicalIF\":5.2000,\"publicationDate\":\"2024-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Pedosphere\",\"FirstCategoryId\":\"97\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1002016024000080\",\"RegionNum\":2,\"RegionCategory\":\"农林科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q1\",\"JCRName\":\"SOIL SCIENCE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Pedosphere","FirstCategoryId":"97","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1002016024000080","RegionNum":2,"RegionCategory":"农林科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q1","JCRName":"SOIL SCIENCE","Score":null,"Total":0}
Potential of arbuscular mycorrhizal fungi for soil health: A review
Soil health is an important component of “One Health”. Soils provide habitat to diverse and abundant organisms. Understanding microbial diversity and functions is essential for building healthy soils towards sustainable agriculture. Arbuscular mycorrhizal fungi (AMF) form potentially symbiotic associations with approximately 80% of land plant species that are well recognized for carbon flux and nutrient cycling. In addition to disentangling the signaling pathways and regulatory mechanisms between the two partners, recent advances in hyphosphere research highlight some emerging roles of AMF and associated microbes in the delivery of soil functions. This paper reviews the contribution of AMF to soil health in agroecosystems, with a major focus on recent progress in the contribution of hyphosphere microbiome to nutrient cycling, carbon sequestration, and soil aggregation. The hyphosphere microbiome and fungal stimulants open avenues for developing new fertilizer formulas to promote AMF benefits. In practice, developing AMF-friendly management strategies will have long-term positive effects on sustainable agriculture aiming at simultaneously providing food security, increasing resource use efficiency, and maintaining environment integrity.
期刊介绍:
PEDOSPHERE—a peer-reviewed international journal published bimonthly in English—welcomes submissions from scientists around the world under a broad scope of topics relevant to timely, high quality original research findings, especially up-to-date achievements and advances in the entire field of soil science studies dealing with environmental science, ecology, agriculture, bioscience, geoscience, forestry, etc. It publishes mainly original research articles as well as some reviews, mini reviews, short communications and special issues.