Yingxian Cui , Yangzhuoyue Jin , Yu Hou , Xiaoxu Han , Haiyan Cao , Lewis E. Kay , Tairan Yuwen
{"title":"通过相循环优化基于 TROSY 和反 TROSY 的 15N CPMG 弛豫弥散实验","authors":"Yingxian Cui , Yangzhuoyue Jin , Yu Hou , Xiaoxu Han , Haiyan Cao , Lewis E. Kay , Tairan Yuwen","doi":"10.1016/j.jmr.2024.107629","DOIUrl":null,"url":null,"abstract":"<div><p>CPMG relaxation dispersion studies of biomolecular dynamics on the μs–ms timescale can provide detailed kinetic, thermodynamic, and structural insights into function. Frequently, the <sup>15</sup>N spin serves as the probe of choice, as uniform incorporation of the <sup>15</sup>N isotope is facile and cost-effective, and the interpretation of the resulting data is often relatively straightforward. In conventional CPMG relaxation dispersion experiments the application of CPMG pulses with constant radiofrequency (RF) phase can lead to artifactual dispersion profiles that result from off-resonance effects, RF field inhomogeneity, and pulse miscalibration. The development of CPMG experiments with the [0013]-phase cycle has significantly reduced the impact of pulse imperfections over a greater bandwidth of frequency offsets in comparison to constant phase experiments. Application of <sup>15</sup>N-TROSY-based CPMG schemes to studies of the dynamics of large molecules is necessary for high sensitivity, yet the correct incorporation of the [0013]-phase cycle is non-trivial. Here we present TROSY- and anti-TROSY-based <sup>15</sup>N CPMG experiments with the [0013]-phase cycling scheme and demonstrate, through comprehensive numerical simulations and experimental validation, enhanced resistance to pulse imperfections relative to traditional schemes utilizing constant phase CPMG pulses. Notably, exchange parameters derived from the new experiments are in good agreement with those obtained using other, more established, <sup>15</sup>N-based CPMG approaches.</p></div>","PeriodicalId":16267,"journal":{"name":"Journal of magnetic resonance","volume":"361 ","pages":"Article 107629"},"PeriodicalIF":2.0000,"publicationDate":"2024-02-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Optimization of TROSY- and anti-TROSY-based 15N CPMG relaxation dispersion experiments through phase cycling\",\"authors\":\"Yingxian Cui , Yangzhuoyue Jin , Yu Hou , Xiaoxu Han , Haiyan Cao , Lewis E. Kay , Tairan Yuwen\",\"doi\":\"10.1016/j.jmr.2024.107629\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>CPMG relaxation dispersion studies of biomolecular dynamics on the μs–ms timescale can provide detailed kinetic, thermodynamic, and structural insights into function. Frequently, the <sup>15</sup>N spin serves as the probe of choice, as uniform incorporation of the <sup>15</sup>N isotope is facile and cost-effective, and the interpretation of the resulting data is often relatively straightforward. In conventional CPMG relaxation dispersion experiments the application of CPMG pulses with constant radiofrequency (RF) phase can lead to artifactual dispersion profiles that result from off-resonance effects, RF field inhomogeneity, and pulse miscalibration. The development of CPMG experiments with the [0013]-phase cycle has significantly reduced the impact of pulse imperfections over a greater bandwidth of frequency offsets in comparison to constant phase experiments. Application of <sup>15</sup>N-TROSY-based CPMG schemes to studies of the dynamics of large molecules is necessary for high sensitivity, yet the correct incorporation of the [0013]-phase cycle is non-trivial. Here we present TROSY- and anti-TROSY-based <sup>15</sup>N CPMG experiments with the [0013]-phase cycling scheme and demonstrate, through comprehensive numerical simulations and experimental validation, enhanced resistance to pulse imperfections relative to traditional schemes utilizing constant phase CPMG pulses. Notably, exchange parameters derived from the new experiments are in good agreement with those obtained using other, more established, <sup>15</sup>N-based CPMG approaches.</p></div>\",\"PeriodicalId\":16267,\"journal\":{\"name\":\"Journal of magnetic resonance\",\"volume\":\"361 \",\"pages\":\"Article 107629\"},\"PeriodicalIF\":2.0000,\"publicationDate\":\"2024-02-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of magnetic resonance\",\"FirstCategoryId\":\"92\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S1090780724000132\",\"RegionNum\":3,\"RegionCategory\":\"化学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"BIOCHEMICAL RESEARCH METHODS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of magnetic resonance","FirstCategoryId":"92","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S1090780724000132","RegionNum":3,"RegionCategory":"化学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"BIOCHEMICAL RESEARCH METHODS","Score":null,"Total":0}
Optimization of TROSY- and anti-TROSY-based 15N CPMG relaxation dispersion experiments through phase cycling
CPMG relaxation dispersion studies of biomolecular dynamics on the μs–ms timescale can provide detailed kinetic, thermodynamic, and structural insights into function. Frequently, the 15N spin serves as the probe of choice, as uniform incorporation of the 15N isotope is facile and cost-effective, and the interpretation of the resulting data is often relatively straightforward. In conventional CPMG relaxation dispersion experiments the application of CPMG pulses with constant radiofrequency (RF) phase can lead to artifactual dispersion profiles that result from off-resonance effects, RF field inhomogeneity, and pulse miscalibration. The development of CPMG experiments with the [0013]-phase cycle has significantly reduced the impact of pulse imperfections over a greater bandwidth of frequency offsets in comparison to constant phase experiments. Application of 15N-TROSY-based CPMG schemes to studies of the dynamics of large molecules is necessary for high sensitivity, yet the correct incorporation of the [0013]-phase cycle is non-trivial. Here we present TROSY- and anti-TROSY-based 15N CPMG experiments with the [0013]-phase cycling scheme and demonstrate, through comprehensive numerical simulations and experimental validation, enhanced resistance to pulse imperfections relative to traditional schemes utilizing constant phase CPMG pulses. Notably, exchange parameters derived from the new experiments are in good agreement with those obtained using other, more established, 15N-based CPMG approaches.
期刊介绍:
The Journal of Magnetic Resonance presents original technical and scientific papers in all aspects of magnetic resonance, including nuclear magnetic resonance spectroscopy (NMR) of solids and liquids, electron spin/paramagnetic resonance (EPR), in vivo magnetic resonance imaging (MRI) and spectroscopy (MRS), nuclear quadrupole resonance (NQR) and magnetic resonance phenomena at nearly zero fields or in combination with optics. The Journal''s main aims include deepening the physical principles underlying all these spectroscopies, publishing significant theoretical and experimental results leading to spectral and spatial progress in these areas, and opening new MR-based applications in chemistry, biology and medicine. The Journal also seeks descriptions of novel apparatuses, new experimental protocols, and new procedures of data analysis and interpretation - including computational and quantum-mechanical methods - capable of advancing MR spectroscopy and imaging.