歌剧中的魅影:机器人对话系统的对抗性音乐攻击

IF 2.4 Q3 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Frontiers in Computer Science Pub Date : 2024-02-15 DOI:10.3389/fcomp.2024.1355975
Sheng Li, Jiyi Li, Yang Cao
{"title":"歌剧中的魅影:机器人对话系统的对抗性音乐攻击","authors":"Sheng Li, Jiyi Li, Yang Cao","doi":"10.3389/fcomp.2024.1355975","DOIUrl":null,"url":null,"abstract":"This study explores the vulnerability of robot dialogue systems' automatic speech recognition (ASR) module to adversarial music attacks. Specifically, we explore music as a natural camouflage for such attacks. We propose a novel method to hide ghost speech commands in a music clip by slightly perturbing its raw waveform. We apply our attack on an industry-popular ASR model, namely the time-delay neural network (TDNN), widely used for speech and speaker recognition. Our experiment demonstrates that adversarial music crafted by our attack can easily mislead industry-level TDNN models into picking up ghost commands with high success rates. However, it sounds no different from the original music to the human ear. This reveals a serious threat by adversarial music to robot dialogue systems, calling for effective defenses against such stealthy attacks.","PeriodicalId":52823,"journal":{"name":"Frontiers in Computer Science","volume":null,"pages":null},"PeriodicalIF":2.4000,"publicationDate":"2024-02-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Phantom in the opera: adversarial music attack for robot dialogue system\",\"authors\":\"Sheng Li, Jiyi Li, Yang Cao\",\"doi\":\"10.3389/fcomp.2024.1355975\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This study explores the vulnerability of robot dialogue systems' automatic speech recognition (ASR) module to adversarial music attacks. Specifically, we explore music as a natural camouflage for such attacks. We propose a novel method to hide ghost speech commands in a music clip by slightly perturbing its raw waveform. We apply our attack on an industry-popular ASR model, namely the time-delay neural network (TDNN), widely used for speech and speaker recognition. Our experiment demonstrates that adversarial music crafted by our attack can easily mislead industry-level TDNN models into picking up ghost commands with high success rates. However, it sounds no different from the original music to the human ear. This reveals a serious threat by adversarial music to robot dialogue systems, calling for effective defenses against such stealthy attacks.\",\"PeriodicalId\":52823,\"journal\":{\"name\":\"Frontiers in Computer Science\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":2.4000,\"publicationDate\":\"2024-02-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Frontiers in Computer Science\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3389/fcomp.2024.1355975\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Frontiers in Computer Science","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3389/fcomp.2024.1355975","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS","Score":null,"Total":0}
引用次数: 0

摘要

本研究探讨了机器人对话系统的自动语音识别(ASR)模块在对抗性音乐攻击面前的脆弱性。具体来说,我们探索音乐作为此类攻击的天然伪装。我们提出了一种新方法,通过轻微扰动音乐片段的原始波形来隐藏音乐片段中的幽灵语音命令。我们将攻击应用于业界流行的 ASR 模型,即广泛用于语音和说话人识别的时延神经网络 (TDNN)。我们的实验证明,我们的攻击所制作的对抗性音乐可以轻易地误导行业级 TDNN 模型,使其高成功率地捕捉到幽灵指令。然而,在人耳听来,它与原始音乐并无不同。这揭示了对抗性音乐对机器人对话系统的严重威胁,要求对这种隐蔽攻击进行有效防御。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Phantom in the opera: adversarial music attack for robot dialogue system
This study explores the vulnerability of robot dialogue systems' automatic speech recognition (ASR) module to adversarial music attacks. Specifically, we explore music as a natural camouflage for such attacks. We propose a novel method to hide ghost speech commands in a music clip by slightly perturbing its raw waveform. We apply our attack on an industry-popular ASR model, namely the time-delay neural network (TDNN), widely used for speech and speaker recognition. Our experiment demonstrates that adversarial music crafted by our attack can easily mislead industry-level TDNN models into picking up ghost commands with high success rates. However, it sounds no different from the original music to the human ear. This reveals a serious threat by adversarial music to robot dialogue systems, calling for effective defenses against such stealthy attacks.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
Frontiers in Computer Science
Frontiers in Computer Science COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS-
CiteScore
4.30
自引率
0.00%
发文量
152
审稿时长
13 weeks
期刊最新文献
A Support Vector Machine based approach for plagiarism detection in Python code submissions in undergraduate settings Working with agile and crowd: human factors identified from the industry Energy-efficient, low-latency, and non-contact eye blink detection with capacitive sensing Experimenting with D-Wave quantum annealers on prime factorization problems Fuzzy Markov model for the reliability analysis of hybrid microgrids
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1