使用二氧化硅和光刻胶掩模,用 Cl2 混合物对 InP 进行室温电感耦合等离子体刻蚀

Qingyue Li, Claire Deeb, Hélène Debregeas, J. Pelouard
{"title":"使用二氧化硅和光刻胶掩模,用 Cl2 混合物对 InP 进行室温电感耦合等离子体刻蚀","authors":"Qingyue Li, Claire Deeb, Hélène Debregeas, J. Pelouard","doi":"10.1116/6.0003295","DOIUrl":null,"url":null,"abstract":"We report the results of a study on the inductively coupled plasma (ICP) etching of InP at room temperature using Cl2 mixtures (Cl2/N2/H2). The impact of different process parameters, including the RF power, the ICP power, the ion-to-neutral ratio, and the chamber pressure, on the etched profile was investigated. The etch rate, selectivity, and anisotropy of the profile were depicted for each etching recipe. Two types of masks, such as SiO2 and AZ5214 photoresist, were used in this study. The etched InP feature showed a very smooth surface (rms as low as 0.5 nm) and a relatively fast etch rate of about 450 nm/min with both masks. By adjusting the etch process and depending on the used mask, we tuned the anisotropy from about 19° to 60°. A selectivity of around 4:1 and 1:1 was obtained with SiO2 and photoresist masks, respectively. These results demonstrate how altering the ICP process parameters could affect the etching characteristics and profile.","PeriodicalId":282302,"journal":{"name":"Journal of Vacuum Science & Technology B","volume":"114 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Room temperature inductively coupled plasma etching of InP with Cl2 mixtures using SiO2 and photoresist masks\",\"authors\":\"Qingyue Li, Claire Deeb, Hélène Debregeas, J. Pelouard\",\"doi\":\"10.1116/6.0003295\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We report the results of a study on the inductively coupled plasma (ICP) etching of InP at room temperature using Cl2 mixtures (Cl2/N2/H2). The impact of different process parameters, including the RF power, the ICP power, the ion-to-neutral ratio, and the chamber pressure, on the etched profile was investigated. The etch rate, selectivity, and anisotropy of the profile were depicted for each etching recipe. Two types of masks, such as SiO2 and AZ5214 photoresist, were used in this study. The etched InP feature showed a very smooth surface (rms as low as 0.5 nm) and a relatively fast etch rate of about 450 nm/min with both masks. By adjusting the etch process and depending on the used mask, we tuned the anisotropy from about 19° to 60°. A selectivity of around 4:1 and 1:1 was obtained with SiO2 and photoresist masks, respectively. These results demonstrate how altering the ICP process parameters could affect the etching characteristics and profile.\",\"PeriodicalId\":282302,\"journal\":{\"name\":\"Journal of Vacuum Science & Technology B\",\"volume\":\"114 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Vacuum Science & Technology B\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1116/6.0003295\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Vacuum Science & Technology B","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1116/6.0003295","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

我们报告了在室温下使用 Cl2 混合物(Cl2/N2/H2)对 InP 进行电感耦合等离子体 (ICP) 蚀刻的研究结果。我们研究了不同工艺参数(包括射频功率、ICP 功率、离子中性比和腔体压力)对蚀刻轮廓的影响。对每种蚀刻配方的蚀刻速率、选择性和蚀刻曲线的各向异性进行了描述。本研究使用了两种掩膜,如二氧化硅和 AZ5214 光刻胶。蚀刻出的 InP 特征表面非常光滑(均方根值低至 0.5 nm),两种掩膜的蚀刻速度都相对较快,约为 450 nm/min。通过调整蚀刻工艺和所使用的掩膜,我们将各向异性调整为 19° 至 60°。二氧化硅和光刻胶掩膜的选择性分别约为 4:1 和 1:1。这些结果证明了改变 ICP 工艺参数如何影响蚀刻特性和轮廓。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Room temperature inductively coupled plasma etching of InP with Cl2 mixtures using SiO2 and photoresist masks
We report the results of a study on the inductively coupled plasma (ICP) etching of InP at room temperature using Cl2 mixtures (Cl2/N2/H2). The impact of different process parameters, including the RF power, the ICP power, the ion-to-neutral ratio, and the chamber pressure, on the etched profile was investigated. The etch rate, selectivity, and anisotropy of the profile were depicted for each etching recipe. Two types of masks, such as SiO2 and AZ5214 photoresist, were used in this study. The etched InP feature showed a very smooth surface (rms as low as 0.5 nm) and a relatively fast etch rate of about 450 nm/min with both masks. By adjusting the etch process and depending on the used mask, we tuned the anisotropy from about 19° to 60°. A selectivity of around 4:1 and 1:1 was obtained with SiO2 and photoresist masks, respectively. These results demonstrate how altering the ICP process parameters could affect the etching characteristics and profile.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Carbon nanotube collimator as an vacuum ultraviolet window Comparative study on variable axis lens systems based on tapered deflectors Transferable GeSn ribbon photodetectors for high-speed short-wave infrared photonic applications Upgrading of the modified Knudsen equation and its verification for calculating the gas flow rate through cylindrical tubes Comparison of GeSn alloy films prepared by ion implantation and remote plasma-enhanced chemical vapor deposition methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1