S. A. Hamidi, Hector Bravo, Sandra L. McLellan, David Lorenz
{"title":"模拟气候变化对密歇根湖城市沿海地区病原体迁移和归宿的影响","authors":"S. A. Hamidi, Hector Bravo, Sandra L. McLellan, David Lorenz","doi":"10.2166/wcc.2024.605","DOIUrl":null,"url":null,"abstract":"\n Infrastructure renewal and public health efforts require prediction of climate change effects on the occurrence of pathogens in the Great Lakes' urban coastal waters. This paper presents an investigation that addressed the climate change effects on transport and the fate of bacteria in Milwaukee's urban coastal area. This investigation was part of a study on climate change risks and impacts that included downscaling of climate change data for meteorological stations around Lake Michigan, and implementation of a hydrologic model that predicts tributary flows and bacteria loads. A method to select scenarios appropriate to link watershed and lake transport processes is presented. For the watershed, the sensitivity of bacterial loads with respect to changes in spring-season precipitation and air temperature is critical, while for lake transport, the most important driver is the wind field. Watershed and lake processes are linked by using spring-season watershed loading in the simulation of coastal transport. Scenarios for hydrodynamic modeling were developed by selecting climate projections that yielded high-and-low percentile projected spring-season wind speed. The patterns of bacteria transport showed significant changes under climate change conditions, and the changes in fecal coliform concentration at critical locations were explained by changes in current vector fields.","PeriodicalId":506949,"journal":{"name":"Journal of Water and Climate Change","volume":"286 ","pages":""},"PeriodicalIF":0.0000,"publicationDate":"2024-02-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling climate change effects on transport and fate of pathogens in an urban coastal area of Lake Michigan\",\"authors\":\"S. A. Hamidi, Hector Bravo, Sandra L. McLellan, David Lorenz\",\"doi\":\"10.2166/wcc.2024.605\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n Infrastructure renewal and public health efforts require prediction of climate change effects on the occurrence of pathogens in the Great Lakes' urban coastal waters. This paper presents an investigation that addressed the climate change effects on transport and the fate of bacteria in Milwaukee's urban coastal area. This investigation was part of a study on climate change risks and impacts that included downscaling of climate change data for meteorological stations around Lake Michigan, and implementation of a hydrologic model that predicts tributary flows and bacteria loads. A method to select scenarios appropriate to link watershed and lake transport processes is presented. For the watershed, the sensitivity of bacterial loads with respect to changes in spring-season precipitation and air temperature is critical, while for lake transport, the most important driver is the wind field. Watershed and lake processes are linked by using spring-season watershed loading in the simulation of coastal transport. Scenarios for hydrodynamic modeling were developed by selecting climate projections that yielded high-and-low percentile projected spring-season wind speed. The patterns of bacteria transport showed significant changes under climate change conditions, and the changes in fecal coliform concentration at critical locations were explained by changes in current vector fields.\",\"PeriodicalId\":506949,\"journal\":{\"name\":\"Journal of Water and Climate Change\",\"volume\":\"286 \",\"pages\":\"\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2024-02-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Journal of Water and Climate Change\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2166/wcc.2024.605\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Journal of Water and Climate Change","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2166/wcc.2024.605","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Modeling climate change effects on transport and fate of pathogens in an urban coastal area of Lake Michigan
Infrastructure renewal and public health efforts require prediction of climate change effects on the occurrence of pathogens in the Great Lakes' urban coastal waters. This paper presents an investigation that addressed the climate change effects on transport and the fate of bacteria in Milwaukee's urban coastal area. This investigation was part of a study on climate change risks and impacts that included downscaling of climate change data for meteorological stations around Lake Michigan, and implementation of a hydrologic model that predicts tributary flows and bacteria loads. A method to select scenarios appropriate to link watershed and lake transport processes is presented. For the watershed, the sensitivity of bacterial loads with respect to changes in spring-season precipitation and air temperature is critical, while for lake transport, the most important driver is the wind field. Watershed and lake processes are linked by using spring-season watershed loading in the simulation of coastal transport. Scenarios for hydrodynamic modeling were developed by selecting climate projections that yielded high-and-low percentile projected spring-season wind speed. The patterns of bacteria transport showed significant changes under climate change conditions, and the changes in fecal coliform concentration at critical locations were explained by changes in current vector fields.